Raspberry Pi – Wikipédia

1200px Raspberry Pi 4 Model B   Side


Série d'ordinateurs monocarte peu coûteux utilisés à des fins éducatives et systèmes embarqués

le Tarte aux framboises () est une série de petits ordinateurs monocarte développés au Royaume-Uni par la Raspberry Pi Foundation.(13) Dès le début, le projet Raspberry Pi s'est orienté vers la promotion de l'enseignement de l'informatique de base dans les écoles et dans les pays en développement.(14)(15)(16) Plus tard, le modèle original est devenu beaucoup plus populaire que prévu,(17) vendre en dehors de son marché cible pour des usages tels que la robotique. Il est maintenant largement utilisé dans de nombreux domaines, comme pour la surveillance météorologique,(18) en raison de son faible coût et de sa portabilité élevée.

Il n'inclut pas les périphériques (tels que les claviers et les souris) ni les étuis. Cependant, certains accessoires ont été inclus dans plusieurs lots officiels et non officiels.(17)

Après la sortie du deuxième type de carte, la Fondation Raspberry Pi a mis en place une nouvelle entité, nommée Raspberry Pi Trading, et installé Eben Upton en tant que PDG, avec la responsabilité de développer la technologie. La Fondation a été reconvertie en tant qu'organisation caritative éducative pour promouvoir l'enseignement de l'informatique de base dans les écoles et les pays en développement.

Le Raspberry Pi est l'un des ordinateurs britanniques les plus vendus.(19) En décembre 2019, plus de trente millions de planches ont été vendues.(20) La plupart des Pis sont fabriqués dans une usine Sony à Pencoed, au Pays de Galles,(21) tandis que d'autres sont fabriqués en Chine et au Japon.(22)

Générations(Éditer)

220px Raspberry Pi Zero FL

Le Raspberry Pi Zero, un modèle à 5 $ US introduit pour la première fois en 2015
220px Raspberry Pi 3 B%2B %2839906369025%29

Le Raspberry Pi 3 B +, introduit en 2018
220px Raspberry Pi 4 Model B   Top

Le Raspberry Pi 4 B, introduit en 2019

Plusieurs générations de Raspberry Pis ont été lancées. Tous les modèles disposent d'un système Broadcom sur puce (SoC) avec une unité centrale (CPU) intégrée compatible ARM et une unité de traitement graphique (GPU) sur puce.

La vitesse du processeur va de 700 MHz à 1,4 GHz pour le Pi 3 modèle B + ou 1,5 GHz pour le Pi 4; La mémoire intégrée va de 256 Mio à 1 Gio de mémoire vive (RAM), avec jusqu'à 8 Gio disponibles sur le Pi 4. Des cartes Secure Digital (SD) au format MicroSDHC (SDHC sur les premiers modèles) sont utilisées pour stocker le système d'exploitation et la mémoire programme. Les cartes ont un à cinq ports USB. Pour la sortie vidéo, HDMI et vidéo composite sont pris en charge, avec une prise jack standard de 3,5 mm pour la sortie audio. La sortie de niveau inférieur est fournie par un certain nombre de broches GPIO, qui prennent en charge des protocoles courants tels que I²C. Les modèles B ont un port Ethernet 8P8C et les Pi 3, Pi 4 et Pi Zero W ont le Wi-Fi 802.11n et Bluetooth intégrés. Les prix varient de 5 $ US à 75 $ US.

La première génération (Raspberry Pi modèle B) est sorti en février 2012, suivi du plus simple et du moins cher Modèle A. En 2014, la Fondation a publié un tableau avec un design amélioré, Raspberry Pi modèle B +. Ces cartes sont approximativement de la taille d'une carte de crédit et représentent la norme ligne principale facteur de forme. Des modèles A + et B + améliorés sont sortis un an plus tard. UNE "Module de calcul" a été lancé en avril 2014 pour les applications embarquées.

le Raspberry Pi 2, qui comportait un processeur ARM Cortex-A7 quadricœur à 900 MHz et 1 Gio de RAM, a été lancé en février 2015.

UNE Raspberry Pi Zero avec une taille plus petite et des capacités d'entrée / sortie (E / S) et d'entrée / sortie à usage général (GPIO) réduites a été lancée en novembre 2015 pour 5 USD. Le 28 février 2017, le Raspberry Pi Zero W a été lancé, une version du Zero avec des capacités Wi-Fi et Bluetooth, pour 10 $ US.(23)(24) Le 12 janvier 2018, le Raspberry Pi Zero WH a été lancé, une version de la Zero W avec des en-têtes GPIO pré-soudés.(25)

Raspberry Pi 3 modèle B a été lancé en février 2016 avec un processeur quadricœur 64 bits à 1,2 GHz, des capacités de démarrage Wi-Fi 802.11n, Bluetooth et USB intégrées.(26) Le Pi Day 2018, le Raspberry Pi 3 modèle B + a été lancé avec un processeur 1,4 GHz plus rapide et un Gigabit Ethernet trois fois plus rapide (débit limité à environ 300 Mbit / s par la connexion USB 2.0 interne) ou Wi-Fi 802.11ac bi-bande 2,4 / 5 GHz (100 Mbit / s) s).(27) Les autres fonctionnalités sont Power over Ethernet (PoE) (avec le complément PoE HAT), le démarrage USB et le démarrage réseau (une carte SD n'est plus nécessaire).

Raspberry Pi 4 modèle B est sorti en juin 2019(2) avec un processeur ARM Cortex-A72 quadricœur 64 bits de 1,5 GHz, Wi-Fi 802.11ac intégré, Bluetooth 5, Ethernet Gigabit complet (débit non limité), deux ports USB 2.0, deux ports USB 3.0 et un double moniteur prise en charge via une paire de ports micro HDMI (HDMI Type D) pour une résolution allant jusqu'à 4K. Le Pi 4 est également alimenté via un port USB-C, ce qui permet de fournir une alimentation supplémentaire aux périphériques en aval, lorsqu'il est utilisé avec un bloc d'alimentation approprié. La carte Raspberry Pi 4 initiale présente un défaut de conception où les câbles USB tiers marqués en ligne, tels que ceux utilisés sur les MacBook Apple, l'identifient de manière incorrecte et refusent de fournir de l'énergie.(28)(29)Tom's Hardware a testé 14 câbles différents et a constaté que 11 d'entre eux allumaient et alimentaient le Pi sans problème.(30) Le défaut de conception a été corrigé dans la révision 1.2 de la carte, publiée fin 2019.(31)

Famille Modèle Facteur de forme Ethernet Sans fil GPIO Libéré Discontinué
Tarte aux framboises B la norme(une) Oui Non 26 broches 2012 Oui
UNE Non 2013 Oui
B + Oui 40 broches 2014
A + Compact(b) Non 2014
Raspberry Pi 2 B la norme(une) Oui Non 2015
Raspberry Pi Zero Zéro Zéro(c) Non Non 2015
W / WH Oui 2017
Raspberry Pi 3 B la norme(une) Oui Oui 2016
A + Compact(b) Non 2018
B + la norme(une) Oui 2018
Raspberry Pi 4 B (1 Gio) la norme(une) Oui (Gigabit Ethernet) Oui 2019(32) Oui(1)
B (2 Gio)
B (4 Gio)
B (8 Gio) 2020
  1. ^ une b c e 85,6 mm × 56,5 mm (3,37 pouces × 2,22 pouces)
  2. ^ une b 65 mm × 56,5 mm (2,56 pouces × 2,22 pouces)
  3. ^ 65 mm × 30 mm (2,6 pouces × 1,2 pouces)

Matériel(Éditer)

Le matériel Raspberry Pi a évolué à travers plusieurs versions qui présentent des variations dans le type d'unité centrale de traitement, la quantité de capacité de mémoire, la prise en charge du réseau et la prise en charge des périphériques.

Fonction de bloc Raspberrypi v01.svg

Ce schéma fonctionnel décrit les modèles B et B +; Les modèles A, A + et Pi Zero sont similaires, mais ne disposent pas des composants du concentrateur Ethernet et USB. L'adaptateur Ethernet est connecté en interne à un port USB supplémentaire. Dans les modèles A, A + et Pi Zero, le port USB est connecté directement au système sur une puce (SoC). Sur le Pi 1 Model B + et les modèles ultérieurs, la puce USB / Ethernet contient un concentrateur USB à cinq ports, dont quatre ports sont disponibles, tandis que le Pi 1 Model B n'en fournit que deux. Sur le Pi Zero, le port USB est également connecté directement au SoC, mais il utilise un port micro USB (OTG). Contrairement à tous les autres modèles Pi, le connecteur GPIO à 40 broches est omis sur le Pi Zero avec des trous traversants soudables uniquement dans les emplacements des broches. Le Pi Zero WH remédie à cela.

Processeur(Éditer)

220px Raspberry Pi 2 Bare BR

Le Raspberry Pi 2B utilise un processeur ARM Cortex-A7 quadricœur 32 bits 900 MHz.

Tous les SoC utilisés dans Raspberry Pis sont développés sur mesure en collaboration avec Broadcom et Raspberry Pi Foundation.

Le SoC Broadcom BCM2835 utilisé dans la première génération de Raspberry Pi(33) comprend un processeur ARM1176JZF-S 700 MHz, une unité de traitement graphique (GPU) VideoCore IV,(34) et RAM. Il dispose d'un cache de niveau 1 (L1) de 16 Ko et d'un cache de niveau 2 (L2) de 128 Ko. Le cache de niveau 2 est principalement utilisé par le GPU. Le SoC est empilé sous la puce de RAM, donc seul son bord est visible. Le ARM1176JZ (F) -S est le même processeur utilisé dans l'iPhone d'origine,(35) bien qu'à une fréquence d'horloge plus élevée, et couplé à un GPU beaucoup plus rapide.

L'ancien modèle V1.1 du Raspberry Pi 2 utilisait un SoC Broadcom BCM2836 avec un processeur ARM Cortex-A7 quadricœur à 900 MHz 32 bits, avec 256 KiB de cache L2 partagé.(36) Le Raspberry Pi 2 V1.2 a été mis à niveau vers un SoC Broadcom BCM2837 avec un processeur ARM Cortex-A53 quadricœur 64 bits à 1,2 GHz,(37) le même SoC qui est utilisé sur le Raspberry Pi 3, mais sous-cadencé (par défaut) à la même vitesse d'horloge du processeur 900 MHz que le V1.1. Le SoC BCM2836 n'est plus en production fin 2016.

Le Raspberry Pi 3 Model B utilise un SoC Broadcom BCM2837 avec un processeur ARM Cortex-A53 quadricœur 64 bits de 1,2 GHz, avec 512 KiB de cache L2 partagé. Les modèles A + et B + sont 1,4 GHz(38)(39)(40)

Le Raspberry Pi 4 utilise un SoC Broadcom BCM2711 avec un processeur ARM Cortex-A72 quadricœur 64 bits de 1,5 GHz, avec 1 Mio de cache L2 partagé.(41)(42) Contrairement aux modèles précédents, qui utilisaient tous un contrôleur d'interruption personnalisé mal adapté à la virtualisation, le contrôleur d'interruption de ce SoC est compatible avec l'architecture ARM Generic Interrupt Controller (GIC) 2.0, fournissant un support matériel pour la distribution d'interruptions lors de l'utilisation des capacités de virtualisation ARM.(43)(44)

Le Raspberry Pi Zero et le Zero W utilisent le même SoC Broadcom BCM2835 que le Raspberry Pi de première génération, bien qu'il fonctionne maintenant à une vitesse d'horloge du processeur de 1 GHz.(45)

Performance(Éditer)

Tout en fonctionnant à 700 MHz par défaut, le Raspberry Pi de première génération offrait des performances réelles à peu près équivalentes à 0,041 GFLOPS.(46)(47) Au niveau du processeur, les performances sont similaires à celles d'un Pentium II 300 MHz de 1997–99. Le GPU fournit 1 Gpixel / s ou 1,5 Gtexel / s de traitement graphique ou 24 GFLOPS de performances informatiques générales. Les capacités graphiques du Raspberry Pi sont à peu près équivalentes aux performances de la Xbox de 2001.

Raspberry Pi 2 V1.1 incluait un processeur Cortex-A7 quadricœur fonctionnant à 900 MHz et 1 Gio de RAM. Il a été décrit comme 4 à 6 fois plus puissant que son prédécesseur. Le GPU était identique à l'original.(36) Dans les benchmarks parallélisés, le Raspberry Pi 2 V1.1 pourrait être jusqu'à 14 fois plus rapide qu'un Raspberry Pi 1 modèle B +.(48)

Le Raspberry Pi 3, doté d'un processeur ARM Cortex-A53 quadricœur, est décrit comme ayant dix fois plus de performances qu'un Raspberry Pi 1.(49) Les benchmarks ont montré que le Raspberry Pi 3 était environ 80% plus rapide que le Raspberry Pi 2 dans les tâches parallélisées.(50)

Overclocking(Éditer)

La plupart des systèmes sur puce Raspberry Pi pourraient être overclockés à 800 MHz, et certains à 1000 MHz. Selon certains rapports, le Raspberry Pi 2 peut être overclocké de la même manière, dans des cas extrêmes, même à 1500 MHz (en supprimant toutes les fonctionnalités de sécurité et les limitations de surtension). dans le Raspbian Linux distro les options d'overclocking au démarrage peuvent être effectuées par une commande logicielle exécutant "sudo raspi-config" sans annuler la garantie.(51) Dans ces cas, le Pi arrête automatiquement l'overclocking si la température de la puce atteint 85 ° C (185 ° F), mais il est possible de remplacer les paramètres de surtension et d'overclocking automatiques (annulant la garantie); un dissipateur thermique de taille appropriée est nécessaire pour protéger la puce contre une surchauffe grave.

Les nouvelles versions du micrologiciel contiennent l'option de choisir entre cinq préréglages d'overclocking ("turbo") qui, lorsqu'ils sont utilisés, tentent de maximiser les performances du SoC sans nuire à la durée de vie de la carte. Cela se fait en surveillant la température du cœur de la puce et la charge du processeur, et en ajustant dynamiquement les vitesses d'horloge et la tension du cœur. Lorsque la demande est faible sur le processeur ou qu'il est trop chaud, les performances sont limitées, mais si le processeur a beaucoup à faire et que la température de la puce est acceptable, les performances sont temporairement augmentées avec des vitesses d'horloge allant jusqu'à 1 GHz, en fonction de la version de la carte et sur lequel des paramètres turbo est utilisé.

Les modes d'overclocking sont:

  • aucun; Bras 700 MHz, cœur 250 MHz, SDRAM 400 MHz, 0 surtension
  • modeste; ARM 800 MHz, cœur 250 MHz, SDRAM 400 MHz, 0 surtension,
  • moyen; ARM 900 MHz, cœur 250 MHz, SDRAM 450 MHz, 2 surtensions,
  • haute; ARM 950 MHz, cœur 250 MHz, SDRAM 450 MHz, 6 surtensions,
  • turbo; ARM 1000 MHz, cœur 500 MHz, SDRAM 600 MHz, 6 surtensions,
  • Pi 2; ARM 1000 MHz, cœur 500 MHz, SDRAM 500 MHz, 2 surtensions,
  • Pi 3; ARM 1100 MHz, cœur 550 MHz, SDRAM 500 MHz, 6 surtensions. Dans les informations système, la vitesse du processeur est de 1 200 MHz. Au ralenti, la vitesse diminue à 600 MHz.(51)(52)

Au plus haut (turbo), la vitesse d'horloge de la SDRAM était à l'origine de 500 MHz, mais elle a ensuite été modifiée à 600 MHz en raison d'une corruption occasionnelle de la carte SD. Simultanément, dans haute mode la vitesse d'horloge de base a été abaissée de 450 à 250 MHz, et en moyen mode de 333 à 250 MHz.

Le processeur des cartes Raspberry Pi de première et deuxième génération ne nécessitait pas de refroidissement avec un dissipateur de chaleur ou un ventilateur, même lorsqu'il était overclocké, mais le Raspberry Pi 3 peut générer plus de chaleur lorsqu'il est overclocké.(53)

RAM(Éditer)

Les premières conceptions des cartes Raspberry Pi modèles A et B ne comprenaient que 256 Mio de mémoire vive (RAM). Sur ce total, les premières cartes bêta Model B allouaient par défaut 128 Mio au GPU, ne laissant que 128 Mio pour le CPU.(54) Sur les premières versions de 256 Mio des modèles A et B, trois divisions différentes étaient possibles. La répartition par défaut était de 192 Mio pour le processeur, ce qui devrait être suffisant pour le décodage vidéo 1080p autonome ou pour un simple traitement 3D. 224 Mio était pour le traitement Linux uniquement, avec seulement un framebuffer 1080p, et était susceptible d'échouer pour n'importe quelle vidéo ou 3D. 128 Mio était pour le traitement 3D lourd, peut-être aussi avec le décodage vidéo.(55) En comparaison, le Nokia 701 utilise 128 Mio pour le Broadcom VideoCore IV.(56)

Le dernier modèle B avec 512 MiB de RAM, est sorti le 15 octobre 2012 et a été initialement publié avec de nouveaux fichiers de répartition de mémoire standard (arm256_start.elf, arm384_start.elf, arm496_start.elf) avec 256 MiB, 384 MiB et 496 MiB CPU RAM et avec respectivement 256 Mio, 128 Mio et 16 Mio de RAM vidéo. Mais environ une semaine plus tard, la fondation a publié une nouvelle version de start.elf qui pouvait lire une nouvelle entrée dans config.txt (gpu_mem =xx) et pourrait attribuer dynamiquement une quantité de RAM (de 16 à 256 Mo par étapes de 8 Mo) au GPU, rendant obsolète l'ancienne méthode de division de la mémoire, et un seul démarrage fonctionnait de la même manière pour 256 MiB et 512 MiB Raspberry Pis.(57)

Le Raspberry Pi 2 a 1 Gio de RAM. Le Raspberry Pi 3 dispose de 1 Gio de RAM dans les modèles B et B + et de 512 Mio de RAM dans le modèle A +.(58)(59)(60) Les Raspberry Pi Zero et Zero W disposent de 512 Mio de RAM.

Le Raspberry Pi 4 est disponible avec 2, 4 ou 8 Gio de RAM.(61) Un modèle 1GiB était initialement disponible au lancement en juin 2019 mais a été abandonné en mars 2020,(1) et le modèle 8 Gio a été introduit en mai 2020.(3)

La mise en réseau(Éditer)

Les modèles A, A + et Pi Zero n'ont pas de circuits Ethernet et sont généralement connectés à un réseau à l'aide d'un adaptateur USB Ethernet ou Wi-Fi externe fourni par l'utilisateur. Sur le Modèle B et B + le port Ethernet est fourni par un adaptateur Ethernet USB intégré utilisant la puce SMSC LAN9514.(62) Le Raspberry Pi 3 et Pi Zero W (sans fil) sont équipés du WiFi 802.11n 2,4 GHz (150 Mbit / s) et Bluetooth 4.1 (24 Mbit / s) basé sur la puce Broadcom BCM43438 FullMAC sans prise en charge officielle du mode moniteur mais mis en œuvre via un correctif non officiel du micrologiciel(63) et le Pi 3 dispose également d'un port Ethernet 10/100 Mbit / s. Le Raspberry Pi 3B + dispose du WiFi bi-bande IEEE 802.11b / g / n / ac, Bluetooth 4.2 et Gigabit Ethernet (limité à environ 300 Mbit / s par le bus USB 2.0 entre celui-ci et le SoC). Le Raspberry Pi 4 a un Ethernet Gigabit complet (le débit n'est pas limité car il n'est pas canalisé via la puce USB.)

Fonctionnalités spéciales(Éditer)

Les Pi Zero, Pi1A et Pi3A + (64) peut être utilisé comme périphérique USB ou "gadget USB", branché sur un autre ordinateur via un port USB sur une autre machine. Il peut être configuré de plusieurs manières, par exemple pour apparaître comme un périphérique série ou un périphérique Ethernet.(65) Bien que nécessitant à l'origine des correctifs logiciels, cela a été ajouté à la distribution principale de Raspbian en mai 2016.(65)

Le Pi 3 peut démarrer à partir d'une clé USB, par exemple à partir d'un lecteur flash.(66) En raison des limitations du micrologiciel dans d'autres modèles, les Pi 2B v1.2, 3A +, 3B et 3B + sont les seules cartes qui peuvent le faire.

Périphériques(Éditer)

220px Raspberry Pi 2 Bare FL

Les cartes modèle 2B intègrent quatre ports USB pour connecter des périphériques.

Bien que souvent préconfiguré pour fonctionner comme un ordinateur sans tête, le Raspberry Pi peut également être utilisé avec n'importe quel clavier et souris d'ordinateur USB générique.(67) Il peut également être utilisé avec un stockage USB, des convertisseurs USB vers MIDI et virtuellement tout autre périphérique / composant avec des capacités USB, en fonction des pilotes de périphérique installés dans le système d'exploitation sous-jacent (dont beaucoup sont inclus par défaut).

D'autres périphériques peuvent être connectés via les différentes broches et connecteurs à la surface du Raspberry Pi.(68)

Vidéo(Éditer)

220px Raspberry Pi   Model A

Le premier Raspberry Pi 1 modèle A, avec un port HDMI et un port vidéo composite RCA standard pour les écrans plus anciens

Le contrôleur vidéo peut générer des résolutions de télévision modernes standard, telles que HD et Full HD, et des résolutions de moniteur supérieures ou inférieures ainsi que des résolutions de télévision CRT standard NTSC ou PAL plus anciennes. À la livraison (c'est-à-dire sans overclocking personnalisé), il peut prendre en charge les résolutions suivantes: 640 × 350 EGA; 640 × 480 VGA; 800 × 600 SVGA; 1024 × 768 XGA; HDTV 1280 × 720 720p; Variante 1280 × 768 WXGA; Variante 1280 × 800 WXGA; 1280 × 1024 SXGA; Variante WXGA 1366 × 768; 1400 × 1050 SXGA +; 1600 × 1200 UXGA; 1680 × 1050 WXGA +; HDTV 1920 × 1080 1080p; 1920 × 1200 WUXGA.(69)

Des résolutions plus élevées, jusqu'à 2048 × 1152, peuvent fonctionner(70)(71) ou même 3840 × 2160 à 15 Hz (fréquence d'images trop faible pour une vidéo convaincante).(72) Autoriser les résolutions les plus élevées n'implique pas que le GPU puisse décoder les formats vidéo à ces résolutions; en fait, les Pis sont connus pour ne pas fonctionner de manière fiable pour H.265 (à ces hautes résolutions),(citation requise) couramment utilisé pour les très hautes résolutions (cependant, les formats les plus courants jusqu'au Full HD fonctionnent).

Bien que le Raspberry Pi 3 ne dispose pas de matériel de décodage H.265, le processeur est plus puissant que ses prédécesseurs, potentiellement assez rapide pour permettre le décodage de vidéos encodées H.265 dans le logiciel.(73) Le GPU du Raspberry Pi 3 fonctionne à des fréquences d'horloge plus élevées de 300 MHz ou 400 MHz, par rapport aux versions précédentes qui fonctionnaient à 250 MHz.(74)

Le Raspberry Pis peut également générer des signaux vidéo composites 576i et 480i, tels qu'utilisés sur les écrans de télévision à l'ancienne (CRT) et les moniteurs moins chers via des connecteurs standard – soit un connecteur RCA ou un connecteur phono 3,5 mm selon le modèle. Les normes de signal de télévision prises en charge sont PAL-BGHID, PAL-M, PAL-N, NTSC et NTSC-J.(75)

Horloge temps réel en option(Éditer)

Depuis l'introduction du Pi 4 B, aucun modèle Raspberry Pi ne possède d'horloge temps réel intégrée. Lors du démarrage, l'heure est définie par défaut sur le réseau à l'aide du protocole de temps réseau. La source des informations de temps peut être un autre ordinateur du réseau local qui Est-ce que avoir une horloge en temps réel, ou à un serveur NTP sur Internet qui à son tour obtient des informations temporelles à partir d'une horloge atomique du National Institute of Standards and Technology (NIST). Si aucune connexion réseau n'est disponible, l'heure peut être réglée manuellement ou configurée pour supposer qu'aucun temps ne s'est écoulé pendant l'arrêt. Dans ce dernier cas, l'heure est monotone (les fichiers enregistrés plus tard dans le temps ont toujours des horodatages plus récents) mais peut être considérablement plus tôt que l'heure réelle. Pour les systèmes qui nécessitent une horloge temps réel intégrée, un certain nombre de petites cartes complémentaires à faible coût avec horloges en temps réel sont disponibles.(76)(77)

Connecteurs(Éditer)

Connecteur d'entrée-sortie (GPIO) à usage général(Éditer)

Les modèles Raspberry Pi 1 A + et B +, Pi 2 modèle B, Pi 3 modèles A +, B et B +, Pi 4 et Pi Zero, Zero W et Zero WH GPIO J8 ont un brochage à 40 broches.(78)(79) Les modèles A et B du Raspberry Pi 1 n'ont que les 26 premières broches.(80)(81)(82)

Dans les Pi Zero et Zero W, les 40 broches GPIO ne sont pas peuplées, les trous traversants étant exposés à la place pour la soudure. Le Zero WH (Wireless + Header) a les broches d'en-tête préinstallées.

GPIO # 2ème func. Épingle# Épingle# 2ème func. GPIO #
+3,3 V 1 2 +5 V
2 SDA1 (I²C) 3 4 +5 V
3 SCL1 (I²C) 5 6 GND
4 GCLK 7 8 TXD0 (UART) 14
GND 9 dix RXD0 (UART) 15
17 GEN0 11 12 GEN1 18
27 GEN2 13 14 GND
22 GEN3 15 16 GEN4 23
+3,3 V 17 18 GEN5 24
dix MOSI (SPI) 19 20 GND
9 MISO (SPI) 21 22 GEN6 25
11 SCLK (SPI) 23 24 CE0_N (SPI) 8
GND 25 26 CE1_N (SPI) 7
(Pi 1 Les modèles A et B s'arrêtent ici)
0 ID_SD (I²C) 27 28 ID_SC (I²C) 1
5 N / A 29 30 GND
6 N / A 31 32 12
13 N / A 33 34 GND
19 N / A 35 36 N / A 16
26 N / A 37 38 Digital IN 20
GND 39 40 Numérique 21

Modèle B rév. 2 dispose également d'un pad (appelé P5 sur la carte et P6 sur les schémas) de 8 broches offrant l'accès à 4 connexions GPIO supplémentaires.(83) Ces broches GPIO ont été libérées lorsque les quatre liens d'identification de version de carte présents dans la révision 1.0 ont été supprimés.(84)

GPIO # 2ème func. Épingle# Épingle# 2ème func. GPIO #
+5 V 1 2 +3,3 V
28 GPIO_GEN7 3 4 GPIO_GEN8 29
30 GPIO_GEN9 5 6 GPIO_GEN10 31
GND 7 8 GND

Les modèles A et B fournissent un accès GPIO au voyant d'état ACT à l'aide de GPIO 16. Les modèles A + et B + fournissent un accès GPIO au voyant d'état ACT à l'aide de GPIO 47 et au voyant d'état d'alimentation à l'aide de GPIO 35.

Caractéristiques(Éditer)

Version Modèle A Modèle B Module de calcul(une) Zéro
RPi 1 modèle A RPi 1 modèle A + RPi 3 modèle A + RPi 1 modèle B RPi 1 Modèle B + RPi 2 modèle B RPi 2 modèle B v1.2 RPi 3 modèle B RPi 3 Modèle B + RPi 4 modèle B Module de calcul 1 Module de calcul 3 Module de calcul 3 Lite Module de calcul 3+ Module de calcul 3+ Lite Carte PCB RPi Zero v1.2 Carte PCB RPi Zero v1.3 RPi Zero W
Date de sortie Févr 2013(85) Novembre 2014(86) Novembre 2018 Avril-juin 2012 Juillet 2014(87) Février 2015(36) Octobre 2016(88) Févr 2016(49) 14 mars 2018(27) 24 juin 2019(89)
28 mai 2020 (8 Go)(3)
Avril 2014(90)(91) Janvier 2017(92) Janv.2019(93) Novembre 2015(8) Mai 2016 28 Fév 2017
Prix ​​cible (USD) 25 $(85) 20 $(86) 25 $ 35 $(94) 25 $(95) 35 $ 35/55/75 $(89)(1)(3) 30 $ (par lots de 100)(96) 30 $ 25 $ 30/35/40 $ 25 $ 5 $(8) 10 $
Jeu d'instructions ARMv6Z (32 bits) ARMv8 (64 bits) ARMv6Z (32 bits) ARMv7-A (32 bits) ARMv8-A (64/32 bits) ARMv6Z (32 bits) ARMv8-A (64/32 bits) ARMv6Z (32 bits)
SoC Broadcom BCM2835(33) Broadcom BCM2837B0(27) Broadcom BCM2835(33) Broadcom BCM2836 Broadcom BCM2837 Broadcom BCM2837B0(27) Broadcom BCM2711(89) Broadcom BCM2835(96) Broadcom BCM2837 Broadcom BCM2837B0 Broadcom BCM2835
FPU VFPv2; NEON non pris en charge VFPv4 + NEON VFPv2; NEON non pris en charge VFPv3 + NEON VFPv4 + NEON VFPv2; NEON non pris en charge VFPv4 + NEON VFPv2; NEON non pris en charge
CPU 1 × ARM1176JZF-S 700 MHz 4 × Cortex-A53 1,4 GHz 1 × ARM1176JZF-S 700 MHz 4 × Cortex-A7 900 MHz 4 × Cortex-A53 900 MHz 4 × Cortex-A53 1,2 GHz 4 × Cortex-A53 1,4 GHz 4 × Cortex-A72 1,5 GHz(32) 1 × ARM1176JZF-S 700 MHz 4 × Cortex-A53 1,2 GHz 1 × ARM1176JZF-S 1 GHz
GPU Broadcom VideoCore IV @ 250 MHz(b) Broadcom VideoCore VI à 500 MHz(97) Broadcom VideoCore IV @ 250 MHz(b)
Mémoire (SDRAM)(98) 256 Mo(c) 256 ou 512 Mio(c)
Changé à 512 Mio le 10 août 2016(99)
512 Mo(c) 256 ou 512 Mio(c)
Changé à 512 Mio le 15 octobre 2012(100)
512 Mo(c) 1 Gio(c) 1, 2, 4 ou 8 Gio(c) 512 Mo(c) 1 Gio(c) 512 Mo(c)
Ports USB 2.0(67) 1(ré) 1(e) 2(F)(101) 4(g)(62)(87)(102) 2(89) 1(ré)(une) 1(ré)(une) 1(e)(une) 1 micro-USB(ré)
Ports USB 3.0 0 2(89) 0
Ports USB OTG 0 1 (alimentation USB-C)(103) 0 1 micro-USB(ré)
Entrée vidéo Connecteur d'interface de caméra MIPI (CSI) 15 broches, utilisé avec la caméra Raspberry Pi ou la caméra Raspberry Pi NoIR(104) Interface de caméra 2 × MIPI (CSI)(une)(96)(105)(106) Aucun Interface de caméra MIPI (CSI)(107)
HDMI 1 × HDMI (rév 1.3) 2 × HDMI (rev 2.0) via Micro-HDMI(32) 1 × HDMI(une) 1 × mini-HDMI
Vidéo composite via prise RCA via prise jack TRRS 3,5 mm de type CTIA via prise RCA via une prise TRRS de type CTIA 3,5 mm Oui(une)(105) via des points marqués sur le PCB pour les broches d'en-tête en option(109)
Interface d'affichage MIPI (DSI)(h) Oui Oui(une)(96)(106)(110)(111) Non
Entrées audio A partir de la révision 2 cartes via I²S(112)
Sorties audio Analogique via prise téléphonique 3,5 mm; numérique via HDMI et, à partir des cartes de révision 2, I²S Analogique, HDMI, I²S(une) Mini-HDMI, audio stéréo via PWM sur GPIO
Stockage à bord(67) Emplacement pour carte SD, MMC, SDIO (3,3 V avec alimentation par carte uniquement) Fente MicroSDHC(87) Fente pour carte SD, MMC, SDIO Fente MicroSDHC Fente MicroSDHC, mode de démarrage USB(113) Puce de mémoire flash eMMC 4 Gio(96) Fente MicroSDHC Puce de mémoire flash eMMC 8/16/32 Gio(96) Fente MicroSDHC
Ethernet (8P8C)(67) Aucun(114) Aucun 10/100 Mbit / s
Adaptateur USB sur le concentrateur USB(101)
10/100 Mbit / s 10/100/1000 Mbit / s(102) (vitesse réelle max 300 Mbit / s)(115) 10/100/1000 Mbit / s(89) Aucun Aucun
WiFi IEEE 802.11 sans fil b / g / n / ac double bande 2,4 / 5 GHz Aucun b / g / n monobande 2,4 GHz b / g / n / ac double bande 2,4 / 5 GHz b / g / n monobande 2,4 GHz
Bluetooth 4.2 BLE 4.1 BLE 4.2 LS BLE 5,0(89) 4.1 BLE
Périphériques de bas niveau 8 × GPIO(116) plus les éléments suivants, qui peuvent également être utilisés comme GPIO: UART, bus I²C, bus SPI avec deux sélections de puces, audio I²S(117) +3,3 V, +5 V, masse(118)(119) 17 × GPIO plus les mêmes fonctions spécifiques et bus HAT ID 8 × GPIO plus les suivants, qui peuvent également être utilisés comme GPIO: UART, bus I²C, bus SPI avec deux sélections de puces, audio I²S +3,3 V, +5 V, masse. 17 × GPIO plus les mêmes fonctions spécifiques et bus HAT ID 17 × GPIO plus les mêmes fonctions spécifiques, HAT et des connecteurs supplémentaires 4 × UART, 4 × SPI et 4 × I2C.(120) 46 × GPIO, dont certains peuvent être utilisés pour des fonctions spécifiques, notamment I²C, SPI, UART, PCM, PWM(une) 17 × GPIO plus les mêmes fonctions spécifiques et bus HAT ID(8)
Puissance nominale 300 mA (1,5 W)(122) 200 mA (1 W)(123) 700 mA (3,5 W) 200 mA (1 W) en moyenne au repos, 350 mA (1,75 W) maximum sous tension (moniteur, clavier et souris connectés)(124) 220 mA (1,1 W) en moyenne au repos, 820 mA (4,1 W) maximum en cas de stress (moniteur, clavier et souris connectés)(124) 300 mA (1,5 W) en moyenne en veille, 1,34 A (6,7 W) maximum en cas de stress (moniteur, clavier, souris et WiFi connectés)(124) 459 mA (2,295 W) en moyenne en veille, 1,13 A (5,661 W) maximum en cas de stress (moniteur, clavier, souris et WiFi connectés)(125) 600 mA (3 W) en moyenne au repos, 1,25 A (6,25 W) maximum sous contrainte (moniteur, clavier, souris et Ethernet connectés),(124) Alimentation 3 A (15 W) recommandée(2) 200 mA (1 W) 700 mA (3,5 W) 100 mA (0,5 W) en moyenne au repos, 350 mA (1,75 W) maximum sous tension (moniteur, clavier et souris connectés)(124)
Source d'énergie 5 V via un connecteur MicroUSB ou GPIO 5 V via un connecteur USB-C ou GPIO 5 V(une) 5 V via un connecteur MicroUSB ou GPIO
Taille 85,6 mm × 56,5 mm
(3,37 pouces × 2,22 pouces)(je)
65 mm × 56,5 mm × 10 mm
(2,56 pouces × 2,22 pouces × 0,39 pouces)(j)
65 mm × 56,5 mm
(2,56 pouces × 2,22 pouces)
85,60 mm × 56,5 mm
(3,370 × 2,224 pouces)(je)
85,60 mm × 56,5 mm × 17 mm
(3,370 × 2,224 × 0,669 pouces)(126)
67,6 mm × 30 mm
(2,66 pouces × 1,18 pouces)
67,6 mm × 31 mm
(2,66 pouces × 1,22 pouces)
65 mm × 30 mm × 5 mm
(2,56 pouces × 1,18 pouces × 0,20 pouces)
Poids 31 grammes
(1,1 onces)
23 grammes
(0,81 once)
45 grammes
(1,6 onces)
46 grammes
(1,6 onces)(127)
7 grammes
(0,25 once)
9 grammes
(0,32 onces)(129)
Console Ajout d'une interface réseau USB via le partage de connexion(114) ou un câble série avec connecteur d'alimentation GPIO en option(130)
Génération 1 1+ 3+ 1 1+ 2 2 ver 1.2 3 3+ 4 1 3 3 Lite 3+ 3+ Lite PCB ver 1.2 PCB ver 1.3 W (sans fil)
Obsolescence
Déclaration
N / A en production jusqu'en janvier 2026 au moins en production jusqu'en janvier 2026 au moins N / A en production jusqu'en janvier 2026 au moins N / A en production jusqu'en janvier 2022 au moins en production jusqu'en janvier 2026 au moins(131) en production jusqu'en janvier 2026 au moins en production jusqu'en janvier 2026 au moins N / A N / A N / A en production jusqu'en janvier 2026 au moins N / A, ou voir PCB ver 1.3 en production jusqu'en janvier 2022 au moins en production jusqu'en janvier 2026 au moins
Type Modèle A Modèle B Module de calcul(une) Zéro
  1. ^ une b c e F g h je j k l Toutes les interfaces sont via un connecteur SO-DIMM DDR2 à 200 broches.
  2. ^ une b BCM2837: partie 3D du GPU à 300 MHz, partie vidéo du GPU à 400 MHz,(118)(132)OpenGL ES 2.0 (BCM2835, BCM2836: 24 GFLOPS / BCM2837: 28,8 GFLOPS). MPEG-2 et VC-1 (avec licence),(133)Décodeur et encodeur haut profil 1080p30 H.264 / MPEG-4 AVC(33) (BCM2837: 1080p60)
  3. ^ une b c e F g h je j Partagé avec GPU.
  4. ^ une b c e Directement depuis la puce BCM2835.
  5. ^ une b Directement depuis la puce BCM2837B0.
  6. ^ via un concentrateur USB à 3 ports intégré; un port USB connecté en interne au port Ethernet.
  7. ^ via un concentrateur USB à 5 ports intégré; un port USB connecté en interne au port Ethernet.
  8. ^ pour panneaux LCD bruts
  9. ^ une b Hors connecteurs saillants.
  10. ^ Identique au panneau HAT.

Journal des modifications simplifié du modèle B(Éditer)

Modèle Gen Une variante Année SoC Vitesse de l'horloge Noyaux /
Fils
64 bits GFLOPS RAM
(Go)
Vidéo
Production
4K
Prêt
USB Alt
Démarrage
Ethernet
(Max Gbit / s)
Wifi BT Source d'énergie Prix
(USD)

1b1

RPi 1 modèle B

1B (256 Mo)

1b1

2012

BCM2835 0,7 GHz 1/1 0,213

00256

0,25

HDMI1.3
Composite
2 ports USB2.0 0,1 Micro USB 35 $

1b2

RPi 1 modèle B

1B (512 Mo)

1b2

2012

BCM2835 0,7 GHz 1/1 0,213

00512

0,5

HDMI1,3
Composite
2 ports USB2.0 0,1 Micro USB 35 $

1b3

RPi 1 Modèle B +

1B +

1b3

2014

BCM2835 0,7 GHz 1/1 0,213

00512

0,5

HDMI1.3
Composite
4 ports USB2.0 0,1 Micro USB 25 $

2b1

RPi 2 modèle B

2B

2b1

2015

BCM2836 0,9 GHz 4/4 1,47

01024

1

HDMI1.3 4 ports USB2.0 0,1 Micro USB 35 $

2b2

RPi 2 modèle B v1.2

2B v1.2

2b2

2016

BCM2837 0,9 GHz 4/4 4,43

01024

1

HDMI1,3 4 ports USB2.0 0,1 Micro USB 35 $

3b1

RPi 3 modèle B

3B

3b1

2016

BCM2837 1,2 GHz 4/4 3,62

01024

1

HDMI1,3 4 ports USB2.0 USB 0,3 b / g / n

monobande
(2,4 GHz uniquement)

4.1 BLE Micro USB 35 $

3b2

RPi 3 Modèle B +

3B +

3b2

2018

BCM2837B0 1,4 GHz 4/4 5,3

01024

1

HDMI1,3 4 ports USB2.0 USB
Réseau
0,3 b / g / n / ac

bi-bande

4.2 LS BLE Micro USB 35 $

4b1

RPi 4 modèle B

4B (1 Go)

4b1

2019

BCM2711 1,5 GHz 4/4 9,92

01024

1

2 x micro-HDMI2.0 2 ports USB2.0
2 ports USB3.0
USB
Réseau
1.0 b / g / n / ac

bi-bande

5,0 USB-C 35 $

4b2

RPi 4 modèle B

4B (2 Go)

4b2

2019

BCM2711 1,5 GHz 4/4

02048

2

2 x micro-HDMI2.0 2 ports USB2.0
2 ports USB3.0
USB
Réseau
1.0 b / g / n / ac

bi-bande

5,0 USB-C 35 $

à partir de 45 $

4b3

RPi 4 modèle B

4B (4 GO)

4b3

2019

BCM2711 1,5 GHz 4/4 13,5

04096

4

2 x micro-HDMI2.0 2 ports USB2.0
2 x USB3.0
USB
Network
1.0 b/g/n/ac

dual-band

5.0 USB-C $55

4b4

RPi 4 Model B

4B (8GB)

4b4

2020

BCM2711 1.5 GHz 4/4

08192

8

2 x Micro-HDMI2.0 2 x USB2.0
2 x USB3.0
USB
Network
1.0 b/g/n/ac

dual-band

5.0 USB-C $75

Logiciel(edit)

Operating systems(edit)

220px Raspberry Pi 2 Bare Bottom

Various operating systems for the Raspberry Pi can be installed on a MicroSD, MiniSD or SD card, depending on the board and available adapters; seen here is the MicroSD slot located on the bottom of a Raspberry Pi 2 board.

The Raspberry Pi Foundation provides Raspberry Pi OS (formerly called Raspbian), a Debian-based (32-bit) Linux distribution for download, as well as third-party Ubuntu, Windows 10 IoT Core, RISC OS, and LibreELEC (specialised media centre distribution).(134) It promotes Python and Scratch as the main programming languages, with support for many other languages.(135) The default firmware is closed source, while unofficial open source is available.(136)(137)(138) Many other operating systems can also run on the Raspberry Pi. Third-party operating systems available via the official website include Ubuntu MATE, Windows 10 IoT Core, RISC OS and specialised distributions for the Kodi media centre and classroom management.(139) The formally verified microkernel seL4 is also supported.(140)

Other operating systems (not Linux-based)
  • Broadcom VCOS – Proprietary operating system which includes an abstraction layer designed to integrate with existing kernels, such as ThreadX (which is used on the VideoCore4 processor), providing drivers and middleware for application development. In the case of the Raspberry Pi, this includes an application to start the ARM processor(s) and provide the publicly documented API over a mailbox interface, serving as its firmware. An incomplete source of a Linux port of VCOS is available as part of the reference graphics driver published by Broadcom.(141)
  • RISC OS Pi (a special cut down version RISC OS Pico, for 16 MiB cards and larger for all models of Pi 1 & 2, has also been made available.)
  • FreeBSD(142)(143)
  • NetBSD(144)(145)
  • OpenBSD (only on 64-bit platforms, such as Raspberry Pi 3)(146)
  • Plan 9 from Bell Labs(147)(148) and Inferno(149) (in beta)
  • Windows 10 IoT Core – a zero-price edition of Windows 10 offered by Microsoft that runs natively on the Raspberry Pi 2.(150)
  • Haiku – an open source BeOS clone that has been compiled for the Raspberry Pi and several other ARM boards.(151) Work on Pi 1 began in 2011, but only the Pi 2 will be supported.(152)
  • HelenOS – a portable microkernel-based multiserver operating system; has basic Raspberry Pi support since version 0.6.0(153)
Other operating systems (Linux-based)

Driver APIs(edit)

220px Raspberrypi video API 03.svg

Raspberry Pi can use a VideoCore IV GPU via a binary blob, which is loaded into the GPU at boot time from the SD-card, and additional software, that initially was closed source.(169) This part of the driver code was later released.(170) However, much of the actual driver work is done using the closed source GPU code. Application software makes calls to closed source run-time libraries (OpenMax, OpenGL ES or OpenVG), which in turn call an open source driver inside the Linux kernel, which then calls the closed source VideoCore IV GPU driver code. The API of the kernel driver is specific for these closed libraries. Video applications use OpenMAX, 3D applications use OpenGL ES and 2D applications use OpenVG, which both in turn use EGL. OpenMAX and EGL use the open source kernel driver in turn.(171)

Vulkan driver(edit)

The Raspberry Pi Foundation first announced it was working on a Vulkan driver in February of 2020.(172) A working Vulkan driver running Quake 3 at 100 frames per second on a 3B+ was revealed by a graphics engineer that had been working on it as a hobby project on June 20th.(173)

Firmware(edit)

The official firmware is a freely redistributable(174)binary blob, that is proprietary software.(151) A minimal proof-of-concept open source firmware is also available, mainly aimed at initialising and starting the ARM cores as well as performing minimal startup that is required on the ARM side. It is also capable of booting a very minimal Linux kernel, with patches to remove the dependency on the mailbox interface being responsive. It is known to work on Raspberry Pi 1, 2 and 3, as well as some variants of Raspberry Pi Zero.(175)

Third-party application software(edit)

  • AstroPrint – AstroPrint's wireless 3D printing software can be run on the Pi 2.(176)
  • C/C++ Interpreter Ch – Released 3 January 2017, C/C++ interpreter Ch and Embedded Ch are released free for non-commercial use for Raspberry Pi, ChIDE is also included for the beginners to learn C/C++.(177)
  • Mathematica & the Wolfram Language – These were released free as a standard part of the Raspbian NOOBS image in November 2013.(178)(179)(180) As of 12 February 2020, the version is Mathematica 12.0.(181) Programs can be run either from a command line interface or from a Notebook interface. There are Wolfram Language functions for accessing connected devices.(182) There is also a Wolfram Language desktop development kit allowing development for Raspberry Pi in Mathematica from desktop machines, including features from the loaded Mathematica version such as image processing and machine learning.(183)(184)(185)
  • Minecraft – Released 11 February 2013, a modified version that allows players to directly alter the world with computer code.(186)
  • RealVNC – Since 28 September 2016, Raspbian includes RealVNC's remote access server and viewer software.(187)(188)(189) This includes a new capture technology which allows directly-rendered content (e.g. Minecraft, camera preview and omxplayer) as well as non-X11 applications to be viewed and controlled remotely.(190)(191)
  • UserGate Web Filter – On 20 September 2013, Florida-based security vendor Entensys announced porting UserGate Web Filter to Raspberry Pi platform.(192)
  • Steam Link – On 13 December 2018, Valve released official Steam Link game streaming client for the Raspberry Pi 3 and 3 B+.(193)(194)

Software development tools(edit)

  • Arduino IDE – for programming an Arduino.
  • Algoid – for teaching programming to children and beginners.
  • BlueJ – for teaching Java to beginners.
  • Greenfoot – Greenfoot teaches object orientation with Java. Create 'actors' which live in 'worlds' to build games, simulations, and other graphical programs.
  • Julia – an interactive and cross-platform programming language/environment, that runs on the Pi 1 and later.(195) IDEs for Julia, such as Juno, are available. See also Pi-specific Github repository JuliaBerry.
  • Lazarus(196) – a Free Pascal RAD IDE
  • LiveCode – an educational RAD IDE descended from HyperCard using English-like language to write event-handlers for WYSIWYG widgets runnable on desktop, mobile and Raspberry Pi platforms.
  • Ninja-IDE – a cross-platform integrated development environment (IDE) for Python.
  • Processing – an IDE built for the electronic arts, new media art, and visual design communities with the purpose of teaching the fundamentals of computer programming in a visual context.
  • Scratch – a cross-platform teaching IDE using visual blocks that stack like Lego, originally developed by MIT's Life Long Kindergarten group. The Pi version is very heavily optimised(197) for the limited computer resources available and is implemented in the Squeak Smalltalk system. The latest version compatible with The 2 B is 1.6.
  • Squeak Smalltalk – a full-scale open Smalltalk.
  • TensorFlow – an artificial intelligence framework developed by Google. The Raspberry Pi Foundation worked with Google to simplify the installation process through pre-built binaries.(198)
  • Thonny – a Python IDE for beginners.
  • V-Play Game Engine – a cross-platform development framework that supports mobile game and app development with the V-Play Game Engine, V-Play apps, and V-Play plugins.
  • Xojo – a cross-platform RAD tool that can create desktop, web and console apps for Pi 2 and Pi 3.
  • C-STEM Studio – a platform for hands-on integrated learning of computing, science, technology, engineering, and mathematics (C-STEM) with robotics.
  • Erlang – a functional language for building concurrent systems with light-weight processes and message passing.
  • LabVIEW Community Edition – a system-design platform and development environment for a visual programming language from National Instruments.

Accessories(edit)

  • Gertboard – A Raspberry Pi Foundation sanctioned device, designed for educational purposes, that expands the Raspberry Pi's GPIO pins to allow interface with and control of LEDs, switches, analogue signals, sensors and other devices. It also includes an optional Arduino compatible controller to interface with the Pi.(199)
  • Camera – On 14 May 2013, the foundation and the distributors RS Components & Premier Farnell/Element 14 launched the Raspberry Pi camera board alongside a firmware update to accommodate it.(200) The camera board is shipped with a flexible flat cable that plugs into the CSI connector which is located between the Ethernet and HDMI ports. In Raspbian, the user must enable the use of the camera board by running Raspi-config and selecting the camera option. The camera module costs €20 in Europe (9 September 2013).(201) It can produce 1080p, 720p and 640x480p video. The dimensions are 25 mm × 20 mm × 9 mm.(201) In May 2016, v2 of the camera came out, and is an 8 megapixel camera.
  • Infrared Camera – In October 2013, the foundation announced that they would begin producing a camera module without an infrared filter, called the Pi NoIR.(202)
  • Official Display – On 8 September 2015, The foundation and the distributors RS Components & Premier Farnell/Element 14 launched the Raspberry Pi Touch Display(203)
  • HAT (Hardware Attached on Top) expansion boards – Together with the Model B+, inspired by the Arduino shield boards, the interface for HAT boards was devised by the Raspberry Pi Foundation. Each HAT board carries a small EEPROM (typically a CAT24C32WI-GT3)(204) containing the relevant details of the board,(205) so that the Raspberry Pi's OS is informed of the HAT, and the technical details of it, relevant to the OS using the HAT.(206) Mechanical details of a HAT board, which uses the four mounting holes in their rectangular formation, are available online.(207)(208)
  • High Quality Camera – In May 2020, the 12.3 megapixel Sony IMXZ477 sensor camera module was released with support for C- and CS-mount lenses.(209) The unit initially retailed for $50 USD with interchangeable lenses starting at $25 USD.

Vulnerability to flashes of light(edit)

In February 2015, a switched-mode power supply chip, designated U16, of the Raspberry Pi 2 Model B version 1.1 (the initially released version) was found to be vulnerable to flashes of light,(210) particularly the light from xenon camera flashes and green(211) and red laser pointers. However, other bright lights, particularly ones that are on continuously, were found to have no effect. The symptom was the Raspberry Pi 2 spontaneously rebooting or turning off when these lights were flashed at the chip. Initially, some users and commenters suspected that the electromagnetic pulse (EMP) from the xenon flash tube was causing the problem by interfering with the computer's digital circuitry, but this was ruled out by tests where the light was either blocked by a card or aimed at the other side of the Raspberry Pi 2, both of which did not cause a problem. The problem was narrowed down to the U16 chip by covering first the system on a chip (main processor) and then U16 with Blu-Tack (an opaque poster mounting compound). Light being the sole culprit, instead of EMP, was further confirmed by the laser pointer tests,(211) where it was also found that less opaque covering was needed to shield against the laser pointers than to shield against the xenon flashes.(210) The U16 chip seems to be bare silicon without a plastic cover (i.e. a chip-scale package or wafer-level package), which would, if present, block the light. Unofficial workarounds include covering U16 with opaque material (such as electrical tape,(210)(211) lacquer, poster mounting compound, or even balled-up bread(210)), putting the Raspberry Pi 2 in a case,(211) and avoiding taking photos of the top side of the board with a xenon flash. This issue was not discovered before the release of the Raspberry Pi 2 because it is not standard or common practice to test susceptibility to optical interference,(210) while commercial electronic devices are routinely subjected to tests of susceptibility to radio interference.

Reception and use(edit)

220px NASAJPLOpenSourceRover.webp

NASA's Open Source Rover powered by a Raspberry Pi 3

Technology writer Glyn Moody described the project in May 2011 as a "potential BBC Micro 2.0", not by replacing PC compatible machines but by supplementing them.(212) In March 2012 Stephen Pritchard echoed the BBC Micro successor sentiment in ITPRO.(213) Alex Hope, co-author of the Next Gen report, is hopeful that the computer will engage children with the excitement of programming.(214) Co-author Ian Livingstone suggested that the BBC could be involved in building support for the device, possibly branding it as the BBC Nano.(215)The Centre for Computing History strongly supports the Raspberry Pi project, feeling that it could "usher in a new era".(216) Before release, the board was showcased by ARM's CEO Warren East at an event in Cambridge outlining Google's ideas to improve UK science and technology education.(217)

Harry Fairhead, however, suggests that more emphasis should be put on improving the educational software available on existing hardware, using tools such as Google App Inventor to return programming to schools, rather than adding new hardware choices.(218) Simon Rockman, writing in a ZDNet blog, was of the opinion that teens will have "better things to do", despite what happened in the 1980s.(219)

In October 2012, the Raspberry Pi won T3's Innovation of the Year award,(220) and futurist Mark Pesce cited a (borrowed) Raspberry Pi as the inspiration for his ambient device project MooresCloud.(221) In October 2012, the British Computer Society reacted to the announcement of enhanced specifications by stating, "it's definitely something we'll want to sink our teeth into."(222)

In June 2017, Raspberry Pi won the Royal Academy of Engineering MacRobert Award.(223) The citation for the award to the Raspberry Pi said it was "for its inexpensive credit card-sized microcomputers, which are redefining how people engage with computing, inspiring students to learn coding and computer science and providing innovative control solutions for industry."(224)

Clusters of hundreds of Raspberry Pis have been used for testing programs destined for supercomputers(225)

(edit)

The Raspberry Pi community was described by Jamie Ayre of FLOSS software company AdaCore as one of the most exciting parts of the project. Community blogger Russell Davis said that the community strength allows the Foundation to concentrate on documentation and teaching. The community developed a fanzine around the platform called The MagPi(227) which in 2015, was handed over to the Raspberry Pi Foundation by its volunteers to be continued in-house.(228) A series of community Raspberry Jam events have been held across the UK and around the world.(229)

Éducation(edit)

As of January 2012, enquiries about the board in the United Kingdom have been received from schools in both the state and private sectors, with around five times as much interest from the latter. It is hoped that businesses will sponsor purchases for less advantaged schools.(230) The CEO of Premier Farnell said that the government of a country in the Middle East has expressed interest in providing a board to every schoolgirl, to enhance her employment prospects.(231)(232)

In 2014, the Raspberry Pi Foundation hired a number of its community members including ex-teachers and software developers to launch a set of free learning resources for its website.(233) The Foundation also started a teacher training course called Picademy with the aim of helping teachers prepare for teaching the new computing curriculum using the Raspberry Pi in the classroom.(234)

In 2018, NASA launched the JPL Open Source Rover Project, which is a scaled down version of Curiosity rover and uses a Raspberry Pi as the control module, to encourage students and hobbyists to get involved in mechanical, software, electronics, and robotics engineering.(235)

Home automation(edit)

There are a number of developers and applications that are using the Raspberry Pi for home automation. These programmers are making an effort to modify the Raspberry Pi into a cost-affordable solution in energy monitoring and power consumption. Because of the relatively low cost of the Raspberry Pi, this has become a popular and economical alternative to the more expensive commercial solutions.(236)

Industrial automation(edit)

In June 2014, Polish industrial automation manufacturer TECHBASE released ModBerry, an industrial computer based on the Raspberry Pi Compute Module. The device has a number of interfaces, most notably RS-485/232 serial ports, digital and analogue inputs/outputs, CAN and economical 1-Wire buses, all of which are widely used in the automation industry. The design allows the use of the Compute Module in harsh industrial environments, leading to the conclusion that the Raspberry Pi is no longer limited to home and science projects, but can be widely used as an Industrial IoT solution and achieve goals of Industry 4.0.(237)

In March 2018, SUSE announced commercial support for SUSE Linux Enterprise on the Raspberry Pi 3 Model B to support a number of undisclosed customers implementing industrial monitoring with the Raspberry Pi.(238)

Commercial products(edit)

OTTO is a digital camera created by Next Thing Co. It incorporates a Raspberry Pi Compute Module. It was successfully crowd-funded in a May 2014 Kickstarter campaign.(239)

Slice is a digital media player which also uses a Compute Module as its heart. It was crowd-funded in an August 2014 Kickstarter campaign. The software running on Slice is based on Kodi.(240)

Pandémie de covid-19(edit)

In Q1 of 2020, during the coronavirus pandemic, Raspberry Pi computers saw a large increase in demand primarily due to the increase in working from home, but also because of the use of many Raspberry Pi Zeros in ventilators for COVID-19 patients in countries such as Colombia,(241) which were used to combat strain on the healthcare system. In March 2020, Raspberry Pi sales reached 640,000 units, the second largest month of sales in the company's history.(242)

Astro Pi and Proxima(edit)

A project was launched in December 2014 at an event held by the UK Space Agency. The Astro Pi was an augmented Raspberry Pi that included a sensor hat with a visible light or infrared camera. The Astro Pi competition, called Principia, was officially opened in January and was opened to all primary and secondary school aged children who were residents of the United Kingdom. During his mission, British ESA astronaut Tim Peake deployed the computers on board the International Space Station.(243) He loaded the winning code while in orbit, collected the data generated and then sent this to Earth where it was distributed to the winning teams. Covered themes during the competition included spacecraft sensors, satellite imaging, space measurements, data fusion and space radiation.

The organisations involved in the Astro Pi competition include the UK Space Agency, UKspace, Raspberry Pi, ESERO-UK and ESA.

In 2017, the European Space Agency ran another competition open to all students in the European Union called Proxima. The winning programs were ran on the ISS by Thomas Pesquet, a French astronaut.(244)

History(edit)

220px Raspberry Pi board at TransferSummit 2011 cropped

An early alpha-test board in operation using different layout from later beta and production boards

In 2006, early concepts of the Raspberry Pi were based on the Atmel ATmega644 microcontroller. Its schematics and PCB layout are publicly available.(245) Foundation trustee Eben Upton assembled a group of teachers, academics and computer enthusiasts to devise a computer to inspire children.(230) The computer is inspired by Acorn's BBC Micro of 1981.(246)(247) The Model A, Model B and Model B+ names are references to the original models of the British educational BBC Micro computer, developed by Acorn Computers.(248) The first ARM prototype version of the computer was mounted in a package the same size as a USB memory stick.(249) It had a USB port on one end and an HDMI port on the other.

The Foundation's goal was to offer two versions, priced at US$25 and $35. They started accepting orders for the higher priced Model B on 29 February 2012,(250) the lower cost Model A on 4 February 2013.(251) and the even lower cost (US$20) A+ on 10 November 2014.(86) On 26 November 2015, the cheapest Raspberry Pi yet, the Raspberry Pi Zero, was launched at US$5 or £4.(252) According to Upton, the name "Raspberry Pi" was chosen with "Raspberry" as an ode to a tradition of naming early computer companies after fruit, and "Pi" as a reference to the Python programming language.(253)

Pre-launch(edit)

  • July 2011 (2011-07): Trustee Eben Upton publicly approached the RISC OS Open community in July 2011 to enquire about assistance with a port.(254) Adrian Lees at Broadcom has since worked on the port,(255)(256) with his work being cited in a discussion regarding the graphics drivers.(257) This port is now included in NOOBS.
  • August 2011 – 50 alpha boards are manufactured. These boards were functionally identical to the planned Model B,(258) but they were physically larger to accommodate debug headers. Demonstrations of the board showed it running the LXDE desktop on Debian, Quake 3 at 1080p,(259) and Full HD MPEG-4 video over HDMI.(260)
  • October 2011 – A version of RISC OS 5 was demonstrated in public, and following a year of development the port was released for general consumption in November 2012.(261)(262)(263)(264)
  • December 2011 – Twenty-five Model B Beta boards were assembled and tested(265) from one hundred unpopulated PCBs.(266) The component layout of the Beta boards was the same as on production boards. A single error was discovered in the board design where some pins on the CPU were not held high; it was fixed for the first production run.(267) The Beta boards were demonstrated booting Linux, playing a 1080p movie trailer and the Rightware Samurai OpenGL ES benchmark.(268)
  • Early 2012 – During the first week of the year, the first 10 boards were put up for auction on eBay.(269)(270) One was bought anonymously and donated to the museum at The Centre for Computing History in Cambridge, England.(216)(271) The ten boards (with a total retail price of £220) together raised over £16,000,(272) with the last to be auctioned, serial number No. 01, raising £3,500.(273) In advance of the anticipated launch at the end of February 2012, the Foundation's servers struggled to cope with the load placed by watchers repeatedly refreshing their browsers.(274)

Launch(edit)

  • 19 February 2012 – The first proof of concept SD card image that could be loaded onto an SD card to produce a preliminary operating system is released. The image was based on Debian 6.0 (Squeeze), with the LXDE desktop and the Midori browser, plus various programming tools. The image also runs on QEMU allowing the Raspberry Pi to be emulated on various other platforms.(275)(276)
  • 29 February 2012 – Initial sales commence 29 February 2012(277) at 06:00 UTC;. At the same time, it was announced that the model A, originally to have had 128 MiB of RAM, was to be upgraded to 256 MiB before release.(250) The Foundation's website also announced: "Six years after the project's inception, we're nearly at the end of our first run of development – although it's just the beginning of the Raspberry Pi story."(278) The web-shops of the two licensed manufacturers selling Raspberry Pi's within the United Kingdom, Premier Farnell and RS Components, had their websites stalled by heavy web traffic immediately after the launch (RS Components briefly going down completely).(279)(280) Unconfirmed reports suggested that there were over two million expressions of interest or pre-orders.(281) The official Raspberry Pi Twitter account reported that Premier Farnell sold out within a few minutes of the initial launch, while RS Components took over 100,000 pre orders on day one.(250) Manufacturers were reported in March 2012 to be taking a "healthy number" of pre-orders.
  • March 2012 – Shipping delays for the first batch were announced in March 2012, as the result of installation of an incorrect Ethernet port,(282)(283) but the Foundation expected that manufacturing quantities of future batches could be increased with little difficulty if required.(284) "We have ensured we can get them (the Ethernet connectors with magnetics) in large numbers and Premier Farnell and RS Components (the two distributors) have been fantastic at helping to source components," Upton said. The first batch of 10,000 boards was manufactured in Taiwan and China.(285)(286)
  • 8 March 2012 – Release Raspberry Pi Fedora Remix, the recommended Linux distribution,(287) developed at Seneca College in Canada.(288)
  • March 2012 – The Debian port is initiated by Mike Thompson, former CTO of Atomz. The effort was largely carried out by Thompson and Peter Green, a volunteer Debian developer, with some support from the Foundation, who tested the resulting binaries that the two produced during the early stages (neither Thompson nor Green had physical access to the hardware, as boards were not widely accessible at the time due to demand).(289) While the preliminary proof of concept image distributed by the Foundation before launch was also Debian-based, it differed from Thompson and Green's Raspbian effort in a couple of ways. The POC image was based on then-stable Debian Squeeze, while Raspbian aimed to track then-upcoming Debian Wheezy packages.(276) Aside from the updated packages that would come with the new release, Wheezy was also set to introduce the armhf architecture,(290) which became the raison d'être for the Raspbian effort. The Squeeze-based POC image was limited to the armel architecture, which was, at the time of Squeeze's release, the latest attempt by the Debian project to have Debian run on the newest ARM embedded-application binary interface (EABI).(291) The armhf architecture in Wheezy intended to make Debian run on the ARM VFP hardware floating-point unit, while armel was limited to emulating floating point operations in software.(292)(293) Since the Raspberry Pi included a VFP, being able to make use of the hardware unit would result in performance gains and reduced power use for floating point operations.(289) The armhf effort in mainline Debian, however, was orthogonal to the work surrounding the Pi and only intended to allow Debian to run on ARMv7 at a minimum, which would mean the Pi, an ARMv6 device, would not benefit.(290) As a result, Thompson and Green set out to build the 19,000 Debian packages for the device using a custom build cluster.(289)

Post-launch(edit)

  • 16 April 2012 – Reports appear from the first buyers who had received their Raspberry Pi.(294)(295)
  • 20 April 2012 – The schematics for the Model A and Model B are released.(296)
  • 18 May 2012 – The Foundation reported on its blog about a prototype camera module they had tested.(297) The prototype used a 14-megapixel module.
  • 22 May 2012 – Over 20,000 units had been shipped.(298)
  • July 2012 – Release of Raspbian.(299)
  • 16 July 2012 – It was announced that 4,000 units were being manufactured per day, allowing Raspberry Pis to be bought in bulk.(300)(301)
  • 24 August 2012 – Hardware accelerated video (H.264) encoding becomes available after it became known that the existing licence also covered encoding. Formerly it was thought that encoding would be added with the release of the announced camera module.(302)(303) However, no stable software exists for hardware H.264 encoding.(304) At the same time the Foundation released two additional codecs that can be bought separately, MPEG-2 and Microsoft's VC-1. Also it was announced that the Pi will implement CEC, enabling it to be controlled with the television's remote control.(133)
  • 5 September 2012 – The Foundation announced a second revision of the Raspberry Pi Model B.(305) A revision 2.0 board is announced, with a number of minor corrections and improvements.(306)
  • 6 September 2012 – Announcement that in future the bulk of Raspberry Pi units would be manufactured in the UK, at Sony's manufacturing facility in Pencoed, Wales. The Foundation estimated that the plant would produce 30,000 units per month, and would create about 30 new jobs.(307)(308)
  • 15 October 2012 – It is announced that new Raspberry Pi Model Bs are to be fitted with 512 MiB instead of 256 MiB RAM.(309)
  • 24 October 2012 – The Foundation announces that "all of the VideoCore driver code which runs on the ARM" had been released as free software under a BSD-style licence, making it "the first ARM-based multimedia SoC with fully-functional, vendor-provided (as opposed to partial, reverse engineered) fully open-source drivers", although this claim has not been universally accepted.(170) On 28 February 2014, they also announced the release of full documentation for the VideoCore IV graphics core, and a complete source release of the graphics stack under a 3-clause BSD licence(310)(311)
  • October 2012 – It was reported that some customers of one of the two main distributors had been waiting more than six months for their orders. This was reported to be due to difficulties in sourcing the CPU and conservative sales forecasting by this distributor.(312)
  • 17 December 2012 – The Foundation, in collaboration with IndieCity and Velocix, opens the Pi Store, as a "one-stop shop for all your Raspberry Pi (software) needs". Using an application included in Raspbian, users can browse through several categories and download what they want. Software can also be uploaded for moderation and release.(313)
  • 3 June 2013 – "New Out of Box Software" or NOOBS is introduced. This makes the Raspberry Pi easier to use by simplifying the installation of an operating system. Instead of using specific software to prepare an SD card, a file is unzipped and the contents copied over to a FAT formatted (4 GiB or bigger) SD card. That card can then be booted on the Raspberry Pi and a choice of six operating systems is presented for installation on the card. The system also contains a recovery partition that allows for the quick restoration of the installed OS, tools to modify the config.txt and an online help button and web browser which directs to the Raspberry Pi Forums.(314)
  • October 2013 – The Foundation announces that the one millionth Pi had been manufactured in the United Kingdom.(315)
  • November 2013: they announce that the two millionth Pi shipped between 24 and 31 October.(316)
  • 28 February 2014 – On the day of the second anniversary of the Raspberry Pi, Broadcom, together with the Raspberry Pi foundation, announced the release of full documentation for the VideoCore IV graphics core,(clarification needed) and a complete source release of the graphics stack under a 3-clause BSD licence.(310)(311)
220px Raspberry Pi Compute Module

Raspberry Pi Compute Module
220px Raspberry Pi Model B
  • 7 April 2014 – The official Raspberry Pi blog announced the Raspberry Pi Compute Module, a device in a 200-pin DDR2 SO-DIMM-configured memory module (though not in any way compatible with such RAM), intended for consumer electronics designers to use as the core of their own products.(96)
  • June 2014 – The official Raspberry Pi blog mentioned that the three millionth Pi shipped in early May 2014.(317)
  • 14 July 2014 – The official Raspberry Pi blog announced the Raspberry Pi Model B+, "the final evolution of the original Raspberry Pi. For the same price as the original Raspberry Pi model B, but incorporating numerous small improvements people have been asking for".(87)
  • 10 November 2014 – The official Raspberry Pi blog announced the Raspberry Pi Model A+.(86) It is the smallest and cheapest (US$20) Raspberry Pi so far and has the same processor and RAM as the Model A. Like the A, it has no Ethernet port, and only one USB port, but does have the other innovations of the B+, like lower power, micro-SD-card slot, and 40-pin HAT compatible GPIO.
  • 2 February 2015 – The official Raspberry Pi blog announced the Raspberry Pi 2. Looking like a Model B+, it has a 900 MHz quad-core ARMv7 Cortex-A7 CPU, twice the memory (for a total of 1 GiB) and complete compatibility with the original generation of Raspberry Pis.(318)
  • 14 May 2015 – The price of Model B+ was decreased from US$35 to $25, purportedly as a "side effect of the production optimizations" from the Pi 2 development.(319) Industry observers have sceptically noted, however, that the price drop appeared to be a direct response to the CHIP, a lower-priced competitor discontinued in April 2017.(320)
  • 26 November 2015 – The Raspberry Pi Foundation launched the Raspberry Pi Zero, the smallest and cheapest member of the Raspberry Pi family yet, at 65 mm × 30 mm, and US$5. The Zero is similar to the Model A+ without camera and LCD connectors, while smaller and uses less power. It was given away with the Raspberry Pi magazine Magpi No. 40 that was distributed in the UK and US that day – the MagPi was sold out at almost every retailer internationally due to the freebie.(8)
  • 29 February 2016 – Raspberry Pi 3 with a BCM2837 1.2 GHz 64-bit quad processor based on the ARMv8 Cortex-A53, with built-in Wi-Fi BCM43438 802.11n 2.4 GHz and Bluetooth 4.1 Low Energy (BLE). Starting with a 32-bit Raspbian version, with a 64-bit version later to come if "there is value in moving to 64-bit mode". In the same announcement it was said that a new BCM2837 based Compute Module was expected to be introduced a few months later.(321)
  • February 2016 – The Raspberry Pi Foundation announces that they had sold eight million devices (for all models combined), making it the best-selling UK personal computer, ahead of the Amstrad PCW.(322)(323) Sales reached ten million in September 2016.(17)
  • 25 April 2016 – Raspberry Pi Camera v2.1 announced with 8 Mpixels, in normal and NoIR (can receive IR) versions. The camera uses the Sony IMX219 chip with a resolution of 3280 × 2464. To make use of the new resolution the software has to be updated.(324)
  • 10 October 2016 – NEC Display Solutions announces that select models of commercial displays to be released in early 2017 will incorporate a Raspberry Pi 3 Compute Module.(325)
  • 14 October 2016 – Raspberry Pi Foundation announces their co-operation with NEC Display Solutions. They expect that the Raspberry Pi 3 Compute Module will be available to the general public by the end of 2016.(326)
  • 25 November 2016 – 11 million units sold.(327)
  • 16 January 2017 – Compute Module 3 and Compute Module 3 Lite are launched.(92)
  • 28 February 2017 – Raspberry Pi Zero W with WiFi and Bluetooth via chip scale antennas launched.(328)(329)
  • 14 March 2018 – On Pi Day, Raspberry Pi Foundation introduced Raspberry Pi 3 Model B+ with improvements in the Raspberry PI 3B computers performance, updated version of the Broadcom application processor, better wireless Wi-Fi and Bluetooth performance and addition of the 5 GHz band.(330)
  • 15 November 2018 – Raspberry Pi 3 Model A+ launched.(331)
  • 28 January 2019 – Compute Module 3+ (CM3+/Lite, CM3+/8 GiB, CM3+/16 GiB and CM3+/32 GiB) launched.(93)
  • 24 June 2019 – Raspberry Pi 4 Model B launched.(332)
  • 10 December 2019 – 30 million units sold;(333) sales are about 6 million per year.(334)(335)
  • 28 May 2020 – 8GB Raspberry Pi 4 announced for $75. The operating system is no longer called "Raspbian", but "Raspberry Pi OS", and an official 64-bit version is now available in beta.(336)

According to the Raspberry Pi Foundation, more than 5 million Raspberry Pis were sold by February 2015, making it the best-selling British computer.(19) By November 2016 they had sold 11 million units,(327)(337) and 12.5 million by March 2017, making it the third best-selling "general purpose computer".(338) In July 2017, sales reached nearly 15 million,(339) climbing to 19 million in March 2018.(27) By December 2019, a total of 30 million devices had been sold.(20)

Voir également(edit)

Les références(edit)

  1. ^ une b c d Halfacree, Gareth (March 2020). "Raspberry Pi 4 now comes with 2GB RAM Minimum". The MagPi (91). Raspberry Pi Press. Retrieved 28 May 2020.
  2. ^ une b c "Raspberry Pi 4 on sale now from $35". 24 June 2019.
  3. ^ une b c d e Upton, Eben (28 May 2020). "8GB Raspberry Pi 4 on sale now at $75". Raspberry Pi Blog. Retrieved 28 May 2020.
  4. ^ "Windows 10 for IoT". Raspberry Pi Foundation. 30 April 2015.
  5. ^ une b c d e F g Hattersley, Lucy. "Raspberry Pi 4, 3A+, Zero W – specs, benchmarks & thermal tests". The MagPi magazine. Raspberry Pi Trading Ltd. Retrieved 28 May 2020.
  6. ^ une b c "DATASHEET – Raspberry Pi Compute Module 3+" (PDF). www.raspberrypi.org. 1 January 2019. Retrieved 28 May 2020.
  7. ^ "Raspberry Pi 4 Tech Specs". Raspberry Pi. Retrieved 26 June 2019.
  8. ^ une b c d e "Raspberry Pi Zero: the $5 Computer". Raspberry Pi Foundation. Retrieved 26 November 2015.
  9. ^ une b "BCM2835 – Raspberry Pi Documentation". raspberrypi.org.
  10. ^ "BCM2711 – Raspberry Pi Documentation". raspberrypi.org.
  11. ^ "BCM2835 – Raspberry Pi Documentation". raspberrypi.org.
  12. ^ https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2711/rpi_DATA_2711_1p0_preliminary.pdf
  13. ^ "Raspberry Pi Foundation – About Us". Raspberry Pi. Retrieved 23 August 2020.
  14. ^ Cellan-Jones, Rory (5 May 2011). "A£15 computer to inspire young programmers". BBC News.
  15. ^ Price, Peter (3 June 2011). "Can a £15 computer solve the programming gap?". BBC Click. Retrieved 2 July 2011.
  16. ^ Bush, Steve (25 May 2011). "Dongle computer lets kids discover programming on a TV". Electronics Weekly. Retrieved 11 July 2011.
  17. ^ une b c "Ten millionth Raspberry Pi, and a new kit – Raspberry Pi". 8 September 2016. Retrieved 9 September 2016. we've beaten our wildest dreams by three orders of magnitude
  18. ^ "The Raspberry Pi in scientific research". Raspberry Pi. 25 April 2013. Retrieved 3 April 2020.
  19. ^ une b Gibbs, Samuel (18 February 2015). "Raspberry Pi becomes best selling British computer". Le gardien. Retrieved 28 December 2016.
  20. ^ une b Upton, Ebon (14 December 2019). "Ebon Upton tweet – sales up to 30 million". the twitter. Retrieved 26 February 2020.(non-primary source needed)
  21. ^ "About Us". sonypencoed.co.uk. Retrieved 27 September 2017.
  22. ^ Tung, Liam (27 July 2017). "Raspberry Pi: 14 million sold, 10 million made in the UK | ZDNet". ZDNet.
  23. ^ "New $10 Raspberry Pi Zero comes with Wi-Fi and Bluetooth". Ars Technica. Retrieved 28 February 2017.
  24. ^ "The $10 Raspberry Pi Zero W brings Wi-Fi and Bluetooth to the minuscule micro". PC World. Retrieved 28 February 2017.
  25. ^ "Zero WH: Pre-soldered headers and what to do with them". Raspberry Pi Foundation. Retrieved 12 January 2018.
  26. ^ "Eben Upton talks Raspberry Pi 3". The MagPi Magazine. 29 February 2016.
  27. ^ une b c d e Upton, Eben (14 March 2018). "Raspberry Pi 3 Model B+ on Sale at $35". Raspberry Pi Blog. Raspberry Pi Foundation. Retrieved 4 May 2018.
  28. ^ "Confirmed: Raspberry Pi 4 suffers from significant USB-C design flaw". Android Authority. 10 July 2019.
  29. ^ "The Raspberry Pi 4 doesn't work with all USB-C cables".
  30. ^ "Tested: 10+ Raspberry Pi 4 USB-C Cables That Work". Tom's Hardware. 13 July 2019. Retrieved 21 July 2019. you’ll still need an AC adapter that delivers 5 volts and at least 3 amps of power so, unless you already have one, your best bet might be to buy the official Raspberry Pi 4 power supply, which comes with a built-in cable and goes for $8 to $10.
  31. ^ Richard Speed (21 February 2020). "Get in the C: Raspberry Pi 4 can handle a wider range of USB adapters thanks to revised design's silent arrival". The Register.
  32. ^ une b c 23 June, Nick Heath in Hardware on; 2019; Pst, 11:00 Pm. "Raspberry Pi 4 Model B review: This board really can replace your PC". TechRepublic. Retrieved 24 June 2019.CS1 maint: numeric names: authors list (link)
  33. ^ une b c d "BCM2835 Media Processor; Broadcom". Broadcom.com. 1 September 2011. Archived from the original on 13 May 2012. Retrieved 6 May 2012.
  34. ^ Brose, Moses (30 January 2012). "Broadcom BCM2835 SoC has the most powerful mobile GPU in the world?". Grand MAX. Archived from the original on 18 February 2012. Retrieved 13 April 2012.
  35. ^ Shimpi, Anand Lal. "The iPhone 3GS Hardware Exposed & Analyzed". Retrieved 11 October 2018.
  36. ^ une b c "Raspberry Pi 2 on sale now at $35". Raspberry Pi Foundation. Retrieved 5 August 2015.
  37. ^ "Raspberry Pi 2, Model B V1.2 Technical Specifications" (PDF). RS Components. Retrieved 20 September 2017.
  38. ^ "Buy a Raspberry Pi 3 Model B – Raspberry Pi". raspberrypi.org.
  39. ^ "Raspberry Pi 3 Model A+"./
  40. ^ "Raspberry Pi 3 Model B+"./
  41. ^ "Raspberry Pi 4 Model B specifications". Retrieved 28 June 2019.
  42. ^ Merten, Dr. Maik (14 September 2019). "Raspi-Kernschau – Das Prozessor-Innenleben des Raspberry Pi 4 im Detail" (Raspi-kernel-show – The inner life of the Raspberry Pi 4 processor in detail). c't (in German). 2019 (20): 164–169.
  43. ^ "22. Raspberry Pi 4 — Trusted Firmware-A documentation". trustedfirmware-a.readthedocs.io. Retrieved 4 May 2020.
  44. ^ "Playing with a Raspberry Pi 4 64-bit | CloudKernels". blog.cloudkernels.net. Retrieved 4 May 2020.
  45. ^ "Raspberry Pi Zero". Retrieved 16 April 2019.
  46. ^ "Performance – measures of the Raspberry Pi's performance". RPi Performance. eLinux.org. Retrieved 30 March 2014.
  47. ^ Benchoff, Brian. "64 Rasberry Pis turned into a supercomputer". Hackaday. Retrieved 30 March 2014.
  48. ^ "Raspberry Pi2 – Power and Performance Measurement". RasPi.TV. RasPi.TV. Retrieved 6 July 2016.
  49. ^ une b Upton, Eben (29 February 2016). "Raspberry Pi 3 on sale now at $35 – Raspberry Pi". Raspberry Pi. Retrieved 29 February 2016.
  50. ^ "How Much Power Does Raspberry Pi3B Use? How Fast Is It Compared To Pi2B?". RasPi.TV. RasPi.TV. Retrieved 6 July 2016.
  51. ^ une b "Introducing turbo mode: up to 50% more performance for free". Raspberrypi.org. Retrieved 20 September 2012.
  52. ^ "asb/raspi-config on Github". asb. Retrieved 11 May 2017.
  53. ^ (1) Overclocking options – raspberrypi.org
  54. ^ "I have a Raspberry Pi Beta Board AMA". reddit.com. 15 January 2012. Retrieved 6 May 2012.
  55. ^ "Raspberry Pi boot configuration text file". raspberrypi.org. Archived from the original on 16 March 2012.
  56. ^ "Nokia 701 has a similar Broadcom GPU". raspberrypi.org. 2 February 2012. Archived from the original on 5 February 2012. Retrieved 22 June 2012.
  57. ^ "introducing new firmware for the 512 MiB Pi". Retrieved 16 September 2014.
  58. ^ "Raspberry Pi 3 A+ specs". raspberrypi.org. Retrieved 15 October 2019.
  59. ^ "Raspberry Pi 3 specs". raspberrypi.org. Retrieved 1 October 2016.
  60. ^ "Raspberry Pi 2 specs". raspberrypi.org. Retrieved 1 October 2016.
  61. ^ "Raspberry Pi 4 specs". raspberrypi.org. Retrieved 25 June 2019.
  62. ^ une b "Microchip/SMSC LAN9514 data sheet;" (PDF). Microchip. Retrieved 15 July 2014.
  63. ^ "seemoo-lab/nexmon". GitHub.
  64. ^ https://www.raspberrypi.org/forums/viewtopic.php?p=1400270#p1400270
  65. ^ une b "Turning your Raspberry PI Zero into a USB Gadget". Adafruit Learning System.
  66. ^ "USB mass storage device boot – Raspberry Pi Documentation". raspberrypi.org.
  67. ^ une b c d "Verified USB Peripherals and SDHC Cards;". Elinux.org. Retrieved 6 May 2012.
  68. ^ "GPIO – Raspberry Pi Documentation". raspberrypi.org. Retrieved 2 June 2019.
  69. ^ "Raspberry Pi, supported video resolutions". eLinux.org. 30 November 2012. Retrieved 11 December 2012.
  70. ^ "Pi Screen limited to 1920 by RISC OS:-". RISC OS Open. Retrieved 6 January 2016. 2048 × 1152 monitor is the highest resolution the Pi's GPU can handle (presumably with non-low frame-rate ..) The monitors screen info confirms the GPU is outputting 2048×1152
  71. ^ "RISC OS Open: Forum: Latest Pi firmware?". riscosopen.org.
  72. ^ "Raspberry Pi and 4k @ 15Hz". Retrieved 6 January 2016. I have managed to get 3840 x 2160 (4k x 2k) at 15Hz on a Seiki E50UY04 working
  73. ^ "Raspberry Pi 3 announced with OSMC support". 28 February 2016.
  74. ^ "Raspberry Pi 3 Model B" (PDF).
  75. ^ Ozolins, Jason. "examples of Raspberry Pi composite output". Raspberrypi.org. Archived from the original on 13 January 2013. Retrieved 22 June 2012.
  76. ^ Shovic, John (July 2014). "Keeping Time". www.raspberry-pi-geek.com. Raspberry Pi Geek Magazine. Retrieved 30 July 2020.
  77. ^ Shovic, John (August 2014). "In Time". www.raspberry-pi-geek.com. Raspberry Pi Geek Magazine. Retrieved 30 July 2020.
  78. ^ James Adams (28 July 2014). "Raspberry Pi B+ (Reduced Schematics) 1.2" (PDF). Archived from the original (PDF) on 29 July 2014.
  79. ^ James Adams (4 April 2016). "Raspberry Pi 3 Model B (Reduced Schematics) 1.2" (PDF).
  80. ^ "Raspberry Pi Rev 1.0 Model AB schematics" (PDF). Archived from the original (PDF) on 25 August 2014.
  81. ^ "Raspberry Pi Rev 2.0 Model AB schematics" (PDF). Archived from the original (PDF) on 25 August 2014.
  82. ^ "Raspberry Pi Rev 2.1 Model AB schematics" (PDF). Archived from the original (PDF) on 25 August 2014.
  83. ^ "Raspberry Pi Rev 1.0 Model AB schematics" (PDF). Archived from the original (PDF) on 25 August 2014.
  84. ^ Eben Upton (5 September 2012). "Upcoming board revision". Retrieved 2 June 2019.
  85. ^ une b "Model A now for sale in Europe – buy one today!". Raspberry Pi Foundation. Retrieved 25 February 2017.
  86. ^ une b c d "Introducing Raspberry Pi Model A+". Raspberry Pi Foundation. Retrieved 10 November 2014.
  87. ^ une b c d "Introducing Raspberry Pi Model B+". Raspberry Pi Foundation. Retrieved 14 July 2014.
  88. ^ http://www.farnell.com/datasheets/2163186.pdf?_ga=1.9528053.1789915275.1482632652
  89. ^ une b c d e F g Amadeo, Ron (24 June 2019). "The Raspberry Pi 4 brings faster CPU, up to 4 GiB of RAM". Ars Technica. Retrieved 24 June 2019.
  90. ^ "Raspberry Pi gets more Arduino-y with new open source modular hardware". Ars Technica. Retrieved 19 June 2018.
  91. ^ Brodkin, Jon (16 January 2017). "Raspberry Pi upgrades Compute Module with 10 times the CPU performance". Ars Technica. Retrieved 16 January 2017.
  92. ^ une b Compute Module 3 Launch, Raspberry Pi Foundation
  93. ^ une b Adams, James. "Compute Module 3+ on sale now from $25". raspberrypi.org. Retrieved 29 January 2019.
  94. ^ Bowater, Donna (29 February 2012). "Mini Raspberry Pi computer goes on sale for £22". The Daily Telegraph. London.
  95. ^ Eben Upton (14 May 2015). "Price Cut! Raspberry Pi Model B+ Now Only $25".
  96. ^ une b c d e F g "Raspberry Pi Compute Module: New Product!". Raspberry Pi Foundation. Retrieved 22 September 2014.
  97. ^ "Raspberry Pi 4 specs and benchmarks". The MagPi Magazine. 24 June 2019. Retrieved 24 June 2019.
  98. ^ "Raspberry Pi revision codes". Raspberry Pi Documentation. 28 May 2020. Retrieved 4 June 2020.
  99. ^ "Raspberry Pi Modal A+ 512MB RAM". Adafruit. 10 August 2016. Retrieved 31 May 2020.
  100. ^ "Model B Now Ships with 512MB of RAM". Raspberry Pi Blog. 15 October 2012. Retrieved 31 May 2020.
  101. ^ une b "SMSC LAN9512 Website;". Smsc.com. Retrieved 6 May 2012.
  102. ^ une b "ProductCompare LAN7515 LAN9514". Microchip. Retrieved 14 March 2018.
  103. ^ "Very simple OTG on pi4".
  104. ^ "diagram of Raspberry Pi with CSI camera connector". Elinux.org. 2 March 2012. Retrieved 22 June 2012.
  105. ^ une b Adams, James (3 April 2014). "Raspberry Pi Compute Module electrical schematic diagram" (PDF). Raspberry Pi Foundation. Archived from the original (PDF) on 30 May 2014. Retrieved 22 September 2014.
  106. ^ une b Adams, James (3 April 2014). "Raspberry Pi Compute Module IO Board electrical schematic diagram" (PDF). Raspberry Pi Foundation. Archived from the original (PDF) on 30 May 2014. Retrieved 22 September 2014.
  107. ^ Upton, Eben (16 May 2016). "zero grows camera connector". Raspberry Pi Foundation. Retrieved 17 May 2016.
  108. ^ "Pi Zero – The New Raspberry Pi Board • Pi Supply". Pi Supply.
  109. ^ "Raspberry Pi Wiki, section screens". Elinux.org. Retrieved 6 May 2012.
  110. ^ "diagram of Raspberry Pi with DSI LCD connector". Elinux.org. Retrieved 6 May 2012.
  111. ^ "I2S driver development thread". Retrieved 16 September 2014.
  112. ^ "How to boot from a USB Mass Storage Device on a Raspberry Pi 3". Raspberry Pi Documentation.
  113. ^ une b "Use an Android tablet as a Raspberry Pi Console terminal and Internet router". Elinux.org. Retrieved 2 October 2015.
  114. ^ "Raspberry Pi 3B+ Specs and Benchmarks – The MagPi Magazine". The MagPi Magazine. 14 March 2018. Retrieved 17 August 2018.
  115. ^ More GPIOs can be used if the low level peripherals are unused
  116. ^ Since the release of the revision 2 model
  117. ^ une b "Q&A with our hardware team". Raspberry Pi Foundation. Archived from the original on 24 September 2011. Retrieved 20 September 2011.
  118. ^ "Raspberry Pi GPIO Connector;". Elinux.org. Retrieved 6 May 2012.
  119. ^ Allan, Alasdair (24 June 2019). "Meet the New Raspberry Pi 4, Model B". Hackster Blog. Retrieved 30 June 2019.
  120. ^ "Power supply confirmed as 5V micro USB". Raspberrypi.org. Retrieved 25 July 2012.
  121. ^ raspi.today. "Features". Raspberry Pi Today. Archived from the original on 27 July 2015.
  122. ^ une b c d e "Raspberry Pi FAQs – Frequently Asked Questions". Raspberry Pi. Retrieved 30 June 2019.
  123. ^ https://www.raspberrypi.org/magpi/wp-content/uploads/2018/03/Raspberry-Pi-Benchmarks-Power-Draw.jpg
  124. ^ "Raspberry Pi 3 | Comparison tables – SocialCompare". socialcompare.com.
  125. ^ Piltch, Avram; Halfacree 2019-11-14T19:43:44Z, Gareth. "Raspberry Pi 4 Review: The New Gold Standard for Single-Board Computing". Tom's Hardware. Retrieved 23 December 2019.
  126. ^ "MagPi, issue 40, Raspberry Pi Zero release article" (PDF). Raspberry Pi Foundation. 26 November 2015. Retrieved 26 November 2015.
  127. ^ "Raspberry Pi USB Serial Connection and power supply". Elinux.org. Retrieved 2 October 2015.
  128. ^ "Buy a Raspberry Pi 3 Model B". Raspberry Pi Foundation. Retrieved 26 May 2020.
  129. ^ Halfacree, Gareth. "Raspberry Pi review". bit-tech.net. Dennis Publishing Limited. Retrieved 10 June 2013. The Model B
  130. ^ une b

    "New video features! MPEG-2 and VC-1 decode, H.264 encode, CEC". Raspberry Pi Foundation. Retrieved 26 August 2012.

  131. ^ "Raspberry Pi downloads". Retrieved 12 August 2016.
  132. ^ "Usage – Raspberry Pi Documentation". raspberrypi.org. Retrieved 12 August 2016.
  133. ^ "Blobless Linux on Raspberry Pi (rpi-open-firmware)". Retrieved 20 July 2017.
  134. ^ "christinaa/rpi-open-firmware: Open source VPU side bootloader for Raspberry Pi". Retrieved 20 July 2017.
  135. ^ "Preliminary Open Source Bootloader for Raspberry Pi Boards Released". Retrieved 20 July 2017.
  136. ^ "Raspberry Pi Downloads – Software for the Raspberry Pi". Retrieved 12 August 2016.
  137. ^ "Supported Platforms". docs.sel4.systems. Retrieved 23 November 2018.
  138. ^ "Broadcom releases SoC graphics driver source (LWN.net)". lwn.net.
  139. ^ "Building image for Raspberry Pi: up to date version | FreeBSD developer's notebook". kernelnomicon.org.
  140. ^ "arm/Raspberry Pi – FreeBSD Wiki".
  141. ^ "Raspberry PI". mail-index.netbsd.org.
  142. ^ "NetBSD 6.0 released with initial Raspberry Pi support". The H. 18 October 2012. Retrieved 18 October 2012.
  143. ^ "OpenBSD/arm64". openbsd.org.
  144. ^ Richard Miller (18 August 2012). "9pi". 9fans.net mail archive. Archived from the original on 12 October 2014.
  145. ^ Liz (5 December 2012). "Wednesday grab bag". Raspberry Pi Foundation. See the "Plan 9" section.
  146. ^ "Inferno raspberry pi image – beta release (beta1)". lynxline.com.
  147. ^ Sauter, Marc (2 February 2015). "Internet der Dinger: Windows 10 läuft kostenlos auf dem Raspberry Pi 2" (Internet of Things: Windows 10 runs free on the Raspberry Pi 2) (in German). Retrieved 8 February 2015.
  148. ^ une b "Compiling Haiku for Arm". haiku-os.org. Retrieved 30 April 2015.
  149. ^ "Haiku port status". Haiku Project. Retrieved 27 June 2019.
  150. ^ "ReleaseNotes/0.6.0 – HelenOS". helenos.org.
  151. ^ "HCL:Raspberry Pi – openSUSE Wiki". en.opensuse.org.
  152. ^ une b "Linux Enterprise Server on Arm Systems & Raspberry Pi | SUSE". suse.com.
  153. ^ "Raspberry Pi – Gentoo Wiki". Retrieved 20 March 2016.
  154. ^ une b "Ubuntu Pi Flavours for Raspberry Pi 3 are released | Ubuntu Pi Flavour Maker". ubuntu-pi-flavour-maker.org.
  155. ^ "SlackwareARM for the Raspberry Pi". Archived from the original on 10 February 2013.
  156. ^ "ArmedSlack working :)". raspberrypi.org. 18 May 2012.
  157. ^ "alt.os.linux.slackware – ARMed Slack running on Raspberry Pi". Retrieved 16 September 2014.
  158. ^ "raspberrypi.org – ArmedSlack 13.37". Retrieved 16 September 2014.
  159. ^ "The Slackware Linux Project: Installation Help". Slackware.com. Retrieved 22 June 2012.
  160. ^ "Slackware Linux Essentials: The Shell". Retrieved 16 September 2014.
  161. ^ v1.0.2 (en), xiando. "Desktops: KDE vs Gnome". Linux Reviews. Retrieved 22 June 2012.
  162. ^ "Sailfish on a Raspberry Pi". together.jolla.com. Jolla. Retrieved 26 February 2015.
  163. ^ "OpenWrt Project: Raspberry Pi Foundation". openwrt.org. Retrieved 23 April 2020.
  164. ^ "Manjaro ARM 20.06 released!". Manjaro Linux Forum. 14 June 2020. Retrieved 8 August 2020.
  165. ^ "RetroPie". RetroPie. Retrieved 25 August 2020.
  166. ^ djwm (13 September 2011). "Raspberry Pi warms up". The H. Retrieved 12 March 2012.
  167. ^ une b "Raspberry Pi maker says code for ARM chip is now open source". Ars Technica. Retrieved 3 November 2012.
  168. ^ "Libraries, codecs, OSS". raspberrypi.org. 31 January 2012.
  169. ^ https://www.tomshardware.com/news/raspberry-pi-vulkan-graphics-driver-release
  170. ^ https://www.tomshardware.com/news/nvidia-engineer-vulkan-driver-raspberry-pi-quake-iii-100-fps
  171. ^ "Hexxeh/rpi-firmware". github.com.
  172. ^ "christinaa/rpi-open-firmware". github.com.
  173. ^ Brothers, Ruiz. "WiFi 3D Printing". Adafruit. Retrieved 22 September 2015.
  174. ^ "C/C++ Interpreter Ch 7.5 released for Raspberry Pi, and Pi Zero".
  175. ^ "Raspberry Pi Includes Mathematica Free". The Verge. 21 November 2013. Retrieved 16 September 2014.
  176. ^ "Wolfram + Raspberry Pi Project: A Wolfram Engine on Every Raspberry Pi". wolfram.com.
  177. ^ Mathematica and the Wolfram Language on Raspberry Pi, Raspberry Pi Blog, January 2014.
  178. ^ "Wolfram + Raspberry Pi Project: Wolfram Language & Mathematica Free on Every Raspberry Pi". Retrieved 12 February 2020.
  179. ^ Wolfram Language Documentation Center.
  180. ^ Wolfram Language™ & Mathematica PILOT RELEASE FOR THE RASPBERRY PI, Wolfram.com.
  181. ^ "Highly Automated Machine Learning: New in Mathematica 10". wolfram.com.
  182. ^ "Image Processing: New in Mathematica 10". wolfram.com.
  183. ^ "Minecraft: Pi Edition – Minecraft: Pi Edition updates and downloads". Retrieved 16 September 2014.
  184. ^ "Introducing PIXEL – Raspberry Pi". Raspberry Pi. 28 September 2016. Retrieved 2 February 2017.
  185. ^ "RealVNC and Raspberry Pi announce new partnership". Retrieved 2 February 2017.
  186. ^ "Raspberry Pi | RealVNC". www.realvnc.com. Retrieved 2 February 2017.
  187. ^ "Minecraft Pi (and more) over VNC – Raspberry Pi". Raspberry Pi. 9 May 2016. Retrieved 2 February 2017.
  188. ^ "Docs | Using VNC 5.x on the Raspberry Pi | RealVNC". www.realvnc.com. Retrieved 2 February 2017.
  189. ^ Pearce, Rohan (20 September 2013). "Entensys builds mini Web filtering appliance with Raspberry Pi". Techworld Australia.
  190. ^ "Steam Link now available on Raspberry Pi :: Steam Link Raspberry Pi". steamcommunity.com. Retrieved 15 December 2018.
  191. ^ "Valve's Steam Link For Raspberry Pi Now Available – Phoronix". phoronix.com. Retrieved 15 December 2018.
  192. ^ "Julia Downloads". Retrieved 21 January 2016.
  193. ^ "Raspberry Pi". 21 January 2016.
  194. ^ "A NEW VERSION OF SCRATCH FOR RASPBERRY PI: NOW WITH ADDED GPIO". Retrieved 5 August 2016.
  195. ^ Tung, Liam. "Google AI on Raspberry Pi: Now you get official TensorFlow support". ZDNet. Retrieved 6 August 2018.
  196. ^ "Gertboard is here!". Raspberry Pi Foundation. 8 August 2012. Retrieved 9 August 2012.
  197. ^ "Elinux Wiki: Description of Raspberry Pi Camera Board". Retrieved 3 September 2013.
  198. ^ une b "RPI Camera board – Raspberry-Pi – Raspberry Pi Kamera-Board, 5MP | Farnell Deutschland". de.farnell.com. Retrieved 9 June 2013.
  199. ^ "Pi NoIR". Raspberry Pi Foundation. Retrieved 16 August 2014.
  200. ^ "The Eagarly awaited Raspberry Pi Display". Raspberry Pi Foundation. Retrieved 18 November 2017.
  201. ^ "hats/eeprom-circuit.png at master · raspberrypi/hats · GitHub". GitHub. Retrieved 16 September 2014.
  202. ^ "hats/eeprom-format.md at master · raspberrypi/hats · GitHub". GitHub. Retrieved 16 September 2014.
  203. ^ "raspberrypi/hats · GitHub". GitHub. Retrieved 16 September 2014.
  204. ^ raspberrypi. "hats/hat-board-mechanical.pdf at master · raspberrypi/hats · GitHub" (PDF). GitHub.
  205. ^ _Raspberry_Pi_Foundation" class="citation web cs1">"raspberrypi" in title seem code for–> Raspberry Pi Foundation. "GitHub – raspberrypi/hats". GitHub.
  206. ^ "Raspberry Pi High Quality Camera". Raspberrypi.org. 30 April 2020. Retrieved 1 May 2020.
  207. ^ une b c d e several authors (7–9 February 2015). "Raspberry Pi Forums: Why is the PI2 camera-shy?". Raspberry Pi Forums. Raspberry Pi Foundation. Retrieved 9 February 2015.
  208. ^ une b c d Benchoff, Brian (8 February 2015). "Photonic Reset of the Raspberry Pi 2". Hackaday. Retrieved 8 February 2015.
  209. ^ Moody Glyn (9 May 2011). "As British as Raspberry Pi?". Computerworld UK Open Enterprise blog. Archived from the original on 2 January 2013. Retrieved 2 February 2012.
  210. ^ Pritchard, Stephen (1 March 2012). "Raspberry Pi: A BBC Micro for today's generation". ITPRO. Retrieved 15 March 2012.
  211. ^ Stanford, Peter (3 December 2011). "Computing classes don't teach programming skills". The Daily Telegraph. Londres. Retrieved 27 February 2012.
  212. ^ Vallance, Chris (10 January 2012). "Raspberry Pi bids for success with classroom coders". BBC News. Retrieved 29 February 2012.
  213. ^ une b "One of the First Raspberry Pi Computers Donated to Museum". The Centre for Computing History. 9 January 2012. Retrieved 28 February 2012.
  214. ^ Osborn, George (23 February 2012). "How Google can really help improve STEM teaching in the UK". Cabume. Retrieved 28 February 2012.
  215. ^ Fairhead, Harry (2 December 2011). "Raspberry Pi or Programming – What shall we teach the children?". I Programmer. Retrieved 7 February 2012.
  216. ^ Rockman, Simon (21 February 2012). "Is raspberry pi a mid-life crisis?". ZDNet. Retrieved 24 February 2012. Just because young teens led the way in computing in the 1980s doesn't mean it should, will or can happen again. Those outside the tech age bubble have better things to do.
  217. ^ "Raspberry Pi – Innovation of the Year". T3 Gadget Awards. Retrieved 9 October 2012.
  218. ^ "Showtime | Crowdfunding the Light". 5 October 2012. Retrieved 17 April 2013.
  219. ^ "Latest Raspberry Pi has double the RAM". BCS website. BCS. 16 October 2012. Retrieved 18 October 2012.
  220. ^ "Chips that changed the classroom" Ingenia, September 2017
  221. ^ "The coding revolution marches on: Raspberry Pi wins UK's top engineering innovation prize".
  222. ^ https://www.digitaltrends.com/computing/750-raspberry-pi-boards-supercomputing-testbed/?amp
  223. ^ "The MagPi – Raspberry Pi online magazine launched". The Digital Lifestyle.com. Retrieved 16 September 2014.
  224. ^ "All change – meet the new MagPi". Raspberry Pi. Retrieved 15 March 2015.
  225. ^ "Raspberry Jam". Raspberry Pi web. Retrieved 15 March 2015.
  226. ^ une b Moorhead, Joanna (9 January 2012). "Raspberry Pi device will 'reboot computing in schools'". Le gardien. Londres. Retrieved 20 January 2012.
  227. ^ Arthur, Charles (5 March 2012). "Raspberry Pi demand running at '700 per second'". Le gardien. Londres. Retrieved 12 March 2012.
  228. ^ "Raspberry Pi mini computer sells out after taking 700 orders per second". Digital Trends. Retrieved 9 June 2012.
  229. ^ Upton, Liz (2 April 2014). "Welcome to our new website". Cambridge: Raspberry Pi Foundation. Retrieved 15 March 2015.
  230. ^ Philbin, Carrie Anne (17 March 2014). "Picademy – free CPD for teachers". Cambridge: Raspberry Pi Foundation. Retrieved 15 March 2015.
  231. ^ "nasa-jpl/open-source-rover". GitHub.
  232. ^ http://www.ijcsmc.com/docs/papers/May2015/V4I5201599a70.pdf
  233. ^ "Automation controller taps Raspberry Pi Compute Module". LinuxGizmos.com. 25 June 2014. Retrieved 10 March 2017.
  234. ^ https://www.suse.com/c/small-server-big-companies-new-raspberry-pi-support-sles-arm/ A small server for big businesses
  235. ^ "Meet OTTO – The Hackable GIF Camera". Kickstarter. Retrieved 10 November 2016.
  236. ^ "Slice : A media player and more by Five Ninjas". Kickstarter. Retrieved 10 November 2016.
  237. ^ "Raspberry Pi will power ventilators for COVID-19 patients". Engadget. Retrieved 22 April 2020.
  238. ^ April 17, Owen Hughes in Innovation on; 2020; Pst, 3:26 Am. "Raspberry Pi sales are rocketing in the middle of the coronavirus outbreak: Here's why". TechRepublic. Retrieved 22 April 2020.CS1 maint: numeric names: authors list (link)
  239. ^ "Watch Tim Peake with the Astro Pi flight units in space!". Raspberry Pi Foundation. 7 March 2016.
  240. ^ "Proxima – AstroPi!". Raspberry Pi Foundation.
  241. ^ Wong, George (24 October 2011). "Build your own prototype Raspberry Pi minicomputer". ubergizmo. Retrieved 2 November 2011.
  242. ^ "Raspberry Pi • View topic – Raspberry Pi as the successor of BBC Micro". raspberrypi.org. 22 April 2012. Retrieved 12 June 2013. The Foundation trustees tried very hard to get an agreement to use the BBC Micro name, right up to May 2011. /../ Eben touched on the subject a bit during his speech at the [email protected] celebration at the beginning of the month: http://www.raspberrypi.org/archives/970 starting at time index 11:30
  243. ^ Quested, Tony (29 February 2012). "Raspberry blown at Cambridge software detractors". Business Weekly. Retrieved 13 March 2012.
  244. ^ Williams, Chris (28 November 2011). "Psst, kid… Wanna learn how to hack?". The Register. Retrieved 24 December 2011.
  245. ^ "Tiny USB-Sized PC Offers 1080p HDMI Output". Retrieved 1 February 2012.
  246. ^ une b c Richard Lawler, 29 February 2012, Raspberry Pi credit-card sized Linux PCs are on sale now, $25 Model A gets a RAM bump, Engadget
  247. ^ "launch of the model A announced". Retrieved 16 September 2014.
  248. ^ "Raspberry Pi Zero, at swag store". Archived from the original on 8 February 2016.
  249. ^ "Interview with Raspberry's Founder Eben Upton". TechSpot. Retrieved 28 February 2020.
  250. ^ Upton, Eben (23 July 2011). "Yet another potential RISC OS target?". RISC OS Open. Retrieved 12 March 2012.
  251. ^ Hansen, Martin (31 October 2011). "Raspberry Pi To Embrace RISC OS". RISCOScode. Retrieved 12 March 2012.
  252. ^ Lees, Adrian (8 February 2012). "RISC OS on the Raspberry Pi". RISC OS Open. Retrieved 12 March 2012.
  253. ^ JamesH (29 December 2011). "GPU binary blob question". Raspberry Pi. Retrieved 12 March 2012.
  254. ^ Humphries, Matthew (28 July 2011). "Raspberry Pi $25 PC goes into alpha production". Geek.com. Retrieved 1 August 2011.
  255. ^ "Raspberry Pi YouTube Channel". Retrieved 28 August 2011.
  256. ^ "Full HD video demo at TransferSummit Oxford". Retrieved 12 September 2011.
  257. ^ Holwerda, Thom (31 October 2011). "Raspberry Pi To Embrace RISC OS". OSNews. Retrieved 1 November 2011.
  258. ^ Dewhurst, Christopher (December 2011). "The London show 2011". Archive. 23 (3). p. 3.
  259. ^ Lee, Jeffrey. "Newsround". The Icon Bar. Retrieved 17 October 2011.
  260. ^ eben. "RISC OS for Raspberry Pi". Retrieved 12 November 2012.
  261. ^ "What happened to the beta boards?". Retrieved 16 September 2014.
  262. ^ "We have PCBs!". Retrieved 16 September 2014.
  263. ^ "More on the beta boards". Retrieved 16 September 2014.
  264. ^ "Bringing up a beta board". Retrieved 16 September 2014.
  265. ^ "We're auctioning ten beta Raspberry Pi's;". Raspberrypi.org. 31 December 2011. Retrieved 6 May 2012.
  266. ^ Williams, Chris (3 January 2012). "That Brit-built £22 computer: Yours for just £1,900 or more". The Register. Retrieved 10 January 2012.
  267. ^ Cheerin, Iris (11 January 2012). "Raspberry Pi Goes into Production". TechWeekEurope UK. Retrieved 11 January 2012.
  268. ^ "eBay list of items sold by Raspberry Pi (retrieved 13 January 2012)". Ebay.co.uk. Retrieved 6 May 2012.
  269. ^ "Raspberry Pi Model B beta board – No. 01 of a limited series of 10". Ebay.co.uk. 11 January 2012. Retrieved 6 May 2012.
  270. ^ ""Set your alarms!" – Raspberry Pi looks ready for early Wednesday launch". Cabume. 28 February 2012. Retrieved 28 February 2012.
  271. ^ "linuxnews showing the first release of Debian Squeeze for Raspberry running on QEMU". Linuxnewshere.com. Archived from the original on 2 April 2012. Retrieved 22 June 2012.
  272. ^ une b "Getting ready for launch: first root filesystem available for download". Raspberry Pi Foundation. 17 February 2012. Archived from the original on 20 February 2012. Retrieved 16 July 2013.
  273. ^ "The Raspberry Pi £22 computer goes on general sale". BBC News. 29 February 2012. Retrieved 29 February 2012.
  274. ^ Subramanian, Karthik (2 March 2012). "Low-cost mini-PC Raspberry Pi gets heavily booked". The Hindu. Chennai, India. Retrieved 12 March 2012.
  275. ^ Paul, Ryan (29 February 2012). "Raspberry Pi retailers toppled by demand as $35 Linux computer launches". Ars Technica. Retrieved 29 February 2012.
  276. ^ Naughton, John (4 March 2012). "The Raspberry Pi can help schools get with the programme". The Observer. Londres. Retrieved 12 March 2012.
  277. ^ "Raspberry Pi Buying Guide". Elinux.org. Retrieved 6 May 2012.
  278. ^ Upton, Liz (8 March 2012). "Manufacturing hiccup". Raspberry Pi Foundation. Retrieved 19 March 2012.
  279. ^ Gilbert, David (9 March 2012). "Raspberry Pi £22 Computer Delayed Due to 'Manufacturing Hiccup'". International Business Times. Retrieved 19 March 2012.
  280. ^ Gilbert, David (13 March 2012). "Interview with Eben Upton – Raspberry Pi Founder". International Business Times. Retrieved 19 March 2012.
  281. ^ Lee, Robert (17 January 2012). "Raspberry Pi Balks at UK Tax Regime". Tax-News.com. Retrieved 20 January 2012.
  282. ^ Weakley, Kirsty. "UK computing charity opts to manufacture product abroad". Civil Society Media. Retrieved 20 January 2012.
  283. ^ "Raspberry Pi Fedora Remix, our recommended distro, is ready for download!". Raspberrypi.org. 8 March 2012. Retrieved 22 June 2012.
  284. ^ Chung, Emily (24 February 2012). "$35 computer 'Raspberry Pi' readies for launch". Canada: Canadian Broadcasting Corporation. Retrieved 28 February 2012.
  285. ^ une b c Brodkin, Jon (6 March 2013). "How two volunteers built the Raspberry Pi's operating system". Ars Technica. Technology Lab / Information Technology. Archived from the original on 26 May 2013. Retrieved 17 July 2012.
  286. ^ une b "ArmHardFloatPort". Debian Wiki. Debian. 20 August 2012. Archived from the original on 21 May 2013. Retrieved 17 July 2012.
  287. ^ "ArmEabiPort". Debian Wiki. Debian. 28 June 2013. Archived from the original on 15 May 2013. Retrieved 17 July 2012.
  288. ^ Connors, Jim (16 March 2013). "Is it armhf or armel?". Jim Connors' Weblog. Oracle Blogs. Archived from the original on 9 May 2013. Retrieved 17 July 2012.
  289. ^ "ArmHardFloatPort VfpComparison". Debian Wiki. Debian. 27 April 2011. Archived from the original on 1 February 2013. Retrieved 17 July 2012.
  290. ^ "the first reports of forum members reporting they received their Raspberry Pi". Raspberrypi.org. 16 April 2012. Archived from the original on 18 April 2012. Retrieved 6 May 2012.
  291. ^ "Raspberry Pi boards begin shipping today (video)". Engadget. Retrieved 6 May 2012.
  292. ^ "schematic design, applicable for both version A and B of the Raspberry Pi revision 1.0". Raspberrypi.org. 19 April 2012. Retrieved 6 May 2012.
  293. ^ "CAMERA MODULE – FIRST PICTURES!". Retrieved 9 August 2014.
  294. ^ "Add your Raspberry Pi to the Rastrack map". Raspberrypi.org. 22 May 2012. Retrieved 14 June 2012.
  295. ^ Owano, Nancy (18 July 2012). "Raspberry Pi gets customized OS called Raspbian". PhysOrg. Retrieved 5 September 2012.
  296. ^ "Raspberry Pi lifts sale restrictions, open to bulk buyers". Electronista. Macintosh News Network. 16 July 2012. Retrieved 29 August 2012.
  297. ^ "Want to buy more than one Raspberry Pi? Now you can!". Raspberrypi.org. 16 July 2012. Retrieved 16 July 2012.
  298. ^ "Hardware-assisted H.264 video encoding". raspberrypi.org. 7 February 2012.
  299. ^ Jurczak, Paul. "Raspberry Pi camera module". Raspberrypi.org. Retrieved 15 October 2012.
  300. ^ "performance – What speed can I expect from the hardware-H264-encoding?". Raspberry Pi Stack Exchange.
  301. ^ "Upcoming board revision". Raspberrypi.org. 6 September 2012. Retrieved 5 September 2012.
  302. ^ "board revision for rev 2.0". Raspberrypi.org. 5 September 2012. Retrieved 15 October 2012.
  303. ^ Dunn, John E (7 September 2012). "Raspberry Pi resurrects UK computer industry with new jobs". Computerworld UK. Retrieved 13 September 2012.
  304. ^ "Made in the UK!". Raspberrypi.org. 6 September 2012. Retrieved 6 September 2012.
  305. ^ "Model B now ships with 512 MiB of RAM". Raspberrypi.org. Retrieved 15 October 2012.
  306. ^ une b

    Brodkin, Jon (28 February 2014). "Raspberry Pi marks 2nd birthday with plan for open source graphics driver". Ars Technica. Retrieved 27 July 2014.

  307. ^ une b Upton, Eben (28 February 2014). "A birthday present from Broadcom". Raspberry Pi Foundation. Retrieved 27 July 2014.
  308. ^ Shead, Sam (18 October 2012). "Raspberry Pi delivery delays leave buyers hungry (and angry)". ZDNet. Retrieved 18 October 2012.
  309. ^ "Introducing the Pi Store". Raspberry Pi Foundation. 17 December 2012.
  310. ^ Upton, Liz (3 June 2013). "Introducing the New Out of Box Software (NOOBS)". RPF. Retrieved 4 June 2013.
  311. ^ "Baked in Britain, the millionth Raspberry Pi". BBC. Retrieved 8 October 2013.
  312. ^ "Two Million!". Retrieved 18 November 2013.
  313. ^ "RASPBERRY PI AT BUCKINGHAM PALACE, 3 MILLION SOLD". Retrieved 22 June 2014.
  314. ^ "Raspberry Pi 2 on sale now at $35 Raspberry Pi". Retrieved 3 February 2015.
  315. ^ "Price cut! Raspberry Pi Model B+ now only $25". 14 May 2015. Retrieved 19 May 2015.
  316. ^ "Raspberry Pi slashes price after rival launches on Kickstarter". 18 May 2015. Retrieved 19 May 2015.
  317. ^ Upton, Eben (29 February 2016). "Raspberry Pi 3 available". Raspberry Pi Foundation. Retrieved 1 March 2016.
  318. ^ Alex Hern. "Raspberry Pi 3: the credit card-sized 1.2 GHz PC that costs $35". Le gardien.
  319. ^ "Raspberry Pi 3 on sale now at $35". Raspberry Pi. Archived from the original on 29 February 2016.
  320. ^ "New 8-megapixel camera board on sale at $25". 25 April 2016. Retrieved 6 May 2016. both visible-light and infrared cameras based on the Sony IMX219 8-megapixel sensor, at the same low price of $25. They're available today from our partners RS Components and element14
  321. ^ "NEC Display Solutions announces collaboration with Raspberry Pi". NEC. 10 October 2016. Retrieved 10 November 2016.
  322. ^ Upton, Eben (14 October 2016). "The Compute Module – now in an NEC display near you". Raspberry Pi Foundation. Retrieved 10 November 2016.
  323. ^ une b The Mag Pi Magazine issue 53, Page 10, Raspberry Pi Foundation, On 25 November, it was confirmed that total sales of the Raspberry Pi have now topped 11 million.
  324. ^ "New $10 Raspberry Pi Zero comes with Wi-Fi and Bluetooth". arstechnica.com.
  325. ^ "New product! Raspberry Pi Zero W joins the family". Raspberry Pi Foundation. 28 February 2017.
  326. ^ "Raspberry PI 3B+ on sale now". 14 March 2018. Retrieved 21 March 2018.
  327. ^ "New product: Raspberry Pi 3 Model A+ on sale now at $25 – Raspberry Pi". Raspberry Pi. 15 November 2018. Retrieved 15 November 2018.
  328. ^ "Raspberry Pi 4 on sale now from $35 – Raspberry Pi". Raspberry Pi. 24 June 2019. Retrieved 24 June 2019.
  329. ^ @EbenUpton (13 December 2019). "Raspberry Pi numbers get stale fast. We sold our thirty-millionth unit some time last week (we think Tuesday)" (Tweet) – via Twitter.
  330. ^ @EbenUpton (13 December 2019). "Happy to make an introduction. And they do about six million @Raspberry_Pi units a year, so they definitely have scale" (Tweet) – via Twitter.
  331. ^ @EbenUpton (14 December 2019). "Yes. We don't get sales returns from our licensees until month end. At the end of November, we were at 29.8Mu, with a monthly run rate of 500-600ku. Thus, Tuesday" (Tweet) – via Twitter.
  332. ^ "8GB Raspberry Pi 4 on sale now at $75 – Raspberry Pi". Raspberry Pi. 28 May 2020. Retrieved 28 May 2020.
  333. ^ "Ten millionth Raspberry Pi, and a new kit – Raspberry Pi". Raspberry Pi. 8 September 2016. Retrieved 1 February 2017.
  334. ^ "Raspberry Pi sold over 12.5 million boards in five years". The Verge. Retrieved 27 September 2017.
  335. ^ "Raspberry Pi founder Eben Upton talks sales numbers, proudest moments, community projects, and Raspberry Pi 4 (Q&A)". Betanews. Retrieved 9 November 2017.

Lectures complémentaires(edit)

External links(edit)

<! –
NewPP limit report
Parsed by mw2331
Cached time: 20200926034525
Cache expiry: 2592000
Dynamic content: false
Complications: (vary‐revision‐sha1)
CPU time usage: 2.492 seconds
Real time usage: 2.830 seconds
Preprocessor visited node count: 18653/1000000
Post‐expand include size: 560664/2097152 bytes
Template argument size: 20471/2097152 bytes
Highest expansion depth: 22/40
Expensive parser function count: 17/500
Unstrip recursion depth: 1/20
Unstrip post‐expand size: 1284583/5000000 bytes
Lua time usage: 1.324/10.000 seconds
Lua memory usage: 11.86 MB/50 MB
Lua Profile:
Scribunto_LuaSandboxCallback::callParserFunction 180 ms 14.3%
? 180 ms 14.3%
dataWrapper 140 ms 11.1%
Scribunto_LuaSandboxCallback::getExpandedArgument 100 ms 7.9%
60 ms 4.8%
Scribunto_LuaSandboxCallback::plain 60 ms 4.8%
Scribunto_LuaSandboxCallback::gsub 60 ms 4.8%
makeMessage 60 ms 4.8%
recursiveClone 60 ms 4.8%
Scribunto_LuaSandboxCallback::match 40 ms 3.2%
(others) 320 ms 25.4%
Number of Wikibase entities loaded: 1/400
->



Source link

Laisser un commentaire

Votre adresse de messagerie ne sera pas publiée. Les champs obligatoires sont indiqués avec *